Utilizzando un Cas9 preassemblati complesso ribonucleoproteico (RNP) è un metodo potente per l’editing genomico precisa, efficiente. Qui, si evidenzia sua utilità in una vasta gamma delle cellule e degli organismi, tra cui cellule umane primarie e classico ed emergenti organismi modello.
L’editing genomico eucariotica site-specific con CRISPR (cluster regolarmente interspaziati brevi ripetizioni palindromi)-sistemi di Cas (CRISPR-associata) è rapidamente diventato un luogo comune tra i ricercatori perseguire un’ampia varietà di domande biologiche. Gli utenti utilizzano più spesso la proteina Cas9 derivata da Streptococcus pyogenes in un complesso con una guida facilmente riprogrammata RNA (gRNA). Questi componenti vengono introdotti nelle cellule, e attraverso una base in abbinamento con una regione complementare del genoma doppia elica (dsDNA), l’enzima si unirà entrambi i fili per generare una rotture a doppio filamento (DSB). Riparazione successiva conduce a inserimento casuale o cancellazione eventi (indels) o l’incorporazione di DNA forniti da sperimentatore presso il sito della rottura.
L’uso di un singolo-guida RNA e Cas9 proteina purificata, preassemblati per formare un RNP e consegnati direttamente alle cellule, è un approccio potente per raggiungere gene altamente efficiente di editing. RNP editing particolarmente migliora il tasso di inserimento del gene, un risultato che è spesso difficile da raggiungere. Rispetto alla consegna tramite un plasmide, la più breve persistenza della RNP Cas9 all’interno della cellula conduce a meno eventi fuori bersaglio.
Nonostante i suoi vantaggi, molti utenti occasionali di CRISPR gene editing hanno meno familiari con questa tecnica. Per abbassare la barriera di ingresso, abbiamo delineare protocolli dettagliati per l’attuazione della strategia di RNP in una gamma di contesti, evidenziando i vantaggi distinti e le diverse applicazioni. Ci occupiamo di editing in due tipi di cellule umane primarie, le cellule T e le cellule staminali/progenitrici ematopoietiche (HSPCs). Mostriamo anche come Cas9 RNP editing consente la facile manipolazione genetica di interi organismi, tra cui il verme Caenorhabditis elegans di modello classico e più recentemente introdotto crostaceo di modello, Parhyale hawaiensis.
Fil CRISPR-Cas9 sistema permette agli scienziati di alterare regioni mirate di qualsiasi genoma1. Questa tecnologia veloce e poco costoso ha rivoluzionato la ricerca di base e promette di rendere un profondo impatto sullo sviluppo di terapie personalizzate di malattia, l’agricoltura di precisione e oltre2. CRISPR editing è uno strumento di democratizzazione e implementazione del sistema in un nuovo laboratorio non richiede nessuna particolare esperienza nelle competenze di biologia molecolare del genoma engineering, solo di base. I ricercatori possono ora studiare organismi precedentemente insolubili con pochi mezzi alternativi per manipolazione genetica3,4. Negli ultimi cinque anni da solo, CRISPR editing genomico è stato usato per ingegnere oltre 200 differenti classi di vertebrati, invertebrati, piante e specie microbiche.
Adattato dal pathway di prokaryotic difesa CRISPR, gli elementi fondamentali necessari per l’editing di genoma site-specific sono le proteine Cas9, in genere da S. pyogenes e codone-ottimizzato con un segnale di aggiunta la localizzazione nucleare (NLS) e la sua specializzati RNA Guida5,6. Anche se non è discusso qui, altri Cas9 ortologhi o endonucleasi CRISPR possono anche essere utilizzati. Il gRNA natura è composto di due pezzi separatamente trascritti, il RNA CRISPR (crRNA) e il trans-attivazione crRNA (tracrRNA)7. Questi RNA possono essere fuse in una singola trascrizione, nota come il singolo-guida RNA (sgRNA)8. Maggior parte degli editor di genoma scegliere la snella sgRNA9, anche se il dual-guida è anche usato regolarmente10,11. Gli sperimentatori scegliere un bersaglio di DNA genomico 20 nucleotidi (nt), assicurando che si trova accanto a una breve firma licenza necessaria per il riconoscimento di Cas9, chiamato un motivo adiacente protospacer (PAM) e progettare una gRNA che contiene la sequenza complementare12 .
Una volta all’interno della cellula, il complesso RNP individua il bersaglio genomic, le coppie di basi gRNA con il DNA complementare per ogni fila, e quindi l’enzima idrolizza due filamenti di DNA per generare un doppio filo rompono2. Meccanismo di riparazione del cellulare consente di correggere il DSB da uno di almeno due vie: via pathway (NHEJ) errori non-omologo fine-assemblaggio o la riparazione di omologia-diretto (HDR), che incorpora perfettamente DNA contenente ‘armi’ di omologia su entrambi i lati della rottura. Il sentiero di riparazione ex in genere conduce alla indel formazione e rottura del gene conseguente, mentre quest’ultimo permette di sperimentatori inserire o modificare il DNA sequenze1.
L’efficienza e la precisione di editing dipendono i mezzi con cui Cas9 e gRNA immettere nella cella. Questi componenti possono essere consegnati a cellule coltivate, embrioni o organismi sotto forma di acidi nucleici o come un preassemblato RNP complesso13,14,15. Metodi basati su acido nucleico consegna comuni includono la trasduzione virale, transfezione o elettroporazione di mRNA o di DNA plasmidico. Guida RNA e proteina Cas9 vengono poi prodotti all’interno della cellula e si associano per formare un complesso.
La consegna diretta di RNP richiede la purificazione separata della Guida RNA e proteina Cas9. Questo può essere fatto in casa, o la proteina e sgRNA possono essere acquistati da uno dei diversi fornitori commerciali. Una volta acquisito, il Cas9 e gRNA sono mescolati per formare il complesso RNP enzimaticamente competente e presentare alle cellule di iniezione diretta in embrioni e le uova fecondati, trasfezione basata sui lipidi16o elettroporazione. Il primo rapporto di RNP editing compreso iniezione in c. elegans gonadi17. Microiniezione è ancora il mezzo preferito di introdurre RNP nel embrioni e interi organismi, anche se efficace elettroporazione è stata dimostrata in18,19 e ratto20 embrioni di topo. Descriviamo i protocolli per iniettare direttamente RNP gonadi di c. elegans e p. hawaiensis embrioni e consiglia un tipo specializzato di elettroporazione di consegnare RNP durante la modifica di cellule umane primarie. Questo metodo, il nucleofection, coinvolge ottimizzato elettroporazione programmi e soluzioni specifiche per tipo di cella e permette il RNP entrare sia il citoplasma e il nucleo21.
L’editing genomico con RNP offre diversi vantaggi distinti. Poiché i componenti di RNA e proteine sono pre-assemblati e qualità può essere assicurata prima della consegna, RNP editing evita molti trabocchetti connessi con la consegna dell’acido nucleico-basato. Vale a dire, non c’è alcun rischio di integrazione Cas9-codifica del DNA nel genoma ospite, mRNA non è mai esposto per degradazione ed elude problemi con in vivo gRNA o proteina espressione, pieghevole e associazione22,23. Inoltre, utilizzando RNP conduce per abbassare la tossicità e molti meno eventi fuori bersaglio rispetto l’espressione basata su plasmide, un risultato della più breve emivita di RNP dentro la cella24,25,26,27.
Infine, in modo dimostrabile RNP modifica porta ad alti tassi di editing in una varietà di linee cellulari umane, cellule primarie come fibroblasti, cellule staminali embrionali (ESCs), indotta da cellule staminali pluripotenti (iSPCs), HSPCs, e cellule di T16,24, 25,26,27,28,29; negli invertebrati, tra cui c. elegans, p. hawaiensise mosche della frutta3,17,30; in specie di vertebrati come zebrafish, topi e ratti31,32; nel piantare specie tra cui Arabidopsis, tabacco, lattuga, riso, vite, mela, mais e grano33,34,35,36; e in Chlamydomonas, Penicilliume Candida specie37,38,39. La frequenza di formazione di indel può essere più elevata quando si utilizza RNP rispetto alla consegna del plasmide e inserimento di HDR-mediato del DNA può essere più facile raggiungere25,27,29.
Il protocollo descritto qui utilizza il RNP Cas9 ed è una tecnica efficace, facilmente adattabile che è semplice da applicare a una vasta gamma di sistemi biologici40,41, soprattutto nelle cellule che sono altrimenti difficili da lavorare con e negli organismi senza sistemi affermati per la manipolazione genetica precisa. Iniziamo descrivendo come progettare, ottenere e assemblare il RNP Cas9 prima di coprire il suo utilizzo attraverso organismi e modello diversi tipi di cellule. Cellule staminali/progenitrici ematopoietiche (HSPCs) e cellule T vengono modificate utilizzando lo stesso metodo, il nucleofection, quindi sono coperti insieme nei passaggi 2 e 3 del presente protocollo. Procedure di editing per C. elegans sono descritte nei passaggi 4 e 5 e P. hawaiensis editing è coperto nei passaggi 6 e 7. Infine, poiché il successo di un esperimento di modifica del gene in qualsiasi organismo può essere valutato mediante sequenziamento di genotipo, sottopassaggi che descrive i metodi di analisi possibile per tutte le cellule e organismi descritti nel protocollo sono indicate nel passaggio 8.
Che istituisce un genoma robusto protocollo di modifica in una cella, riga o organismo di interesse richiede l’ottimizzazione ed empirica test di vari parametri chiave, discussi in questa sezione. Cercando alcune variazioni degli approcci generali qui presentati è fortemente incoraggiata. La limitazione di chiave di questo protocollo è che applicando questi metodi ad altre cellule o organismi possono condurre ad un risultato diverso a seconda della specie studiata, e un disegno sperimentale che conduce a un knockout del gene ad alta efficienza non può promuovere l’inserimento di DNA. Pertanto, si consiglia di iniziare con i metodi qui presentati e risoluzione dei problemi come descritto di seguito.
Risoluzione dei problemi di qualità di reagente di editing genomico:
Generazione o l’acquisto di reagenti di alta qualità è un passo fondamentale in qualsiasi protocollo di modifica di genoma. Cas9 proteina possa essere purificata in laboratorio o acquistata in commercio. Molti protocolli di notare una concentrazione finale per Cas9 nelle ricette di RNP, ma il gene ottimo attività di editing dipenderà l’attività specifica di qualsiasi preparazione individuale per la proteina Cas9, che varia a seconda della fonte. Una volta che il protocollo presentato qui sta lavorando, considera l’ottimizzazione della quantità di RNP utilizzato da titolazione Cas9 livelli per stabilire una concentrazione ottimale: uno che fornisce la fenditura del DNA target altamente specifico senza inutili fuori bersaglio scissione causata da eccessivo Cas940.
Guida RNA purezza e omogeneità può anche essere fattori determinanti del successo22di editing genomico. SgRNAs acquistati o componenti separati di crRNA e tracrRNA sono generalmente alta qualità reagenti e una varietà di modificazioni chimiche sono disponibili per combattere i problemi con degradazione di RNA o di infondere caratteristiche aggiuntive a RNP91. Mentre modificati chimicamente gRNAs potrebbe non essere necessario per standard genoma esperimenti di editing, alcuni gruppi hanno osservato molto più alti di editing efficienze con tali reagenti, quindi potrebbero essere la pena di provare dopo il processo di mastering e/o quando gRNA degradazione sembra essere un problema22,91. Trascrizione in vitro e gel successiva purificazione è un’alternativa economica, che può essere sufficiente per routine genoma esperimenti17,21,49,50di editing. Ulteriormente, i diversi approcci che sono comunemente applicato per produrre omogenea gRNA popolazioni in vivo, compreso l’asportazione ribozima e tRNA-based di singole guide, può essere esteso a in vitro preparazione di RNA per generare pulitore prodotti92.
Donatore del DNA e RNA guida progettare suggerimenti:
Selezione di RNA di guida è un fattore critico nel raggiungimento di editing on target altamente efficiente, riducendo al minimo le probabilità di fenditura fuori bersaglio. Per facilitare la selezione della guida, parecchi studi hanno utilizzato schermi di alto-rendimento accoppiati con sequenziamento di nuova generazione per compilare caratteristiche di sequenza di successo guide47,79,93,94, 95,,96. Queste caratteristiche sono state utilizzate per sviluppare algoritmi predittivi e strumenti online per aiutare nella guida selezione44,45,46,47,48. Tali algoritmi sono fondati su schermi utilizzando sistemi basati su DNA per guida espressione del RNA. Guide sono espresse utilizzando un promotore Pol III, e pertanto la loro espressione è soggetta alle limitazioni associate trascrizione Pol III, ad esempio la terminazione prematura quando rileva tracce di uracile97,98, 99. Tuttavia, l’uso di RNP fatto con in vitro-guida sintetizzato RNAs ignora tali preoccupazioni e semplifica i vincoli sul design di guida. Una caratteristica comune che è emerso da questi algoritmi ed è stata confermata in numerosi studi con l’editing genomico altamente efficace, è la presenza di una purina, particolarmente una guanina, all’estremità 3 ‘ della sequenza target-specifici della guida. Questa funzionalità di guida ha avuto molto successo tra gli organismi che vanno dai mammiferi di c. elegans, moscerini della frutta e zebrafish65,100,101. Inoltre, per c. elegans, progettazione di guide con un dinucleotide GG all’estremità 3 ‘ della regione di destinazione della guida è una strategia efficace per la predizione di guida altamente efficace RNAs65. Idealmente, è possibile testare più guide in parallelo per determinare quale è il maggior successo per una determinata applicazione.
Quando si tenta di introdurre una sequenza di DNA nel genoma, il design del donatore o del modello del DNA è anche cruciale. Donatori di singolo-incagliato oligonucleotide (ssODNs) vengono inseriti in modo più affidabile rispetto a altri modelli tipici riparazione, lineare double-stranded e plasmide DNA54,55,102. Alcuni loci, HDR efficienza può essere migliorata con ssODNs che sono complementari alle non-bersaglio o sfollati filo del DNA e possedere armi di omologia che sono asimmetriche in lunghezza27,55. Poiché il modello di riparazione viene inserito nel sito di taglio e comprende la sequenza mirata, deve intraprendere per impedire che Cas9 fendendo il donatore del DNA prima o dopo l’inserimento di genomica. Questa operazione viene eseguita facendo mutazioni silenti per la sequenza di PAM o la regione di seme, evitando il riconoscimento di Cas9 pur mantenendo la funzione del gene inserito21,103. Se anche singolo nucleotide cambia il PAM hanno probabilità di abolire associazione104, provare a cambiare almeno quattro nucleotidi per essere sicuri.
Significato e applicazioni future:
Editing con CRISPR-Cas9 genomico è emerso come un potente metodo che consente di facile manipolazione genetica di qualsiasi organismo. Editing con il RNP Cas9 prende un po’ più sforzo in un primo momento, ma è semplice da usare una volta reagenti e protocolli sono stabiliti in un laboratorio. Modifica delle celle con pre-assemblati RNP invece di DNA del plasmide conduce a una maggiore efficienza di editing generale, compreso l’inserimento del gene difficile da raggiungere via HDR, con meno effetti fuori bersaglio24,25,26 , 27 , 29. Inoltre, gli sperimentatori evitare problemi con l’espressione genica, RNA degradazione, piegatura della proteina e l’associazione tra gRNA e Cas9 molecole sintetizzate separatamente all’interno della cella22,23. Modifica di RNP elude anche preoccupazioni di sicurezza per mutagenesi inserzionale e sostenuta espressione che può sorgere quando i metodi di consegna virali sono usati clinicamente14. A causa di questi vantaggi, molti scienziati conducendo pre-clinici, esperimenti di proof-of-concept bomboniera RNP editing per applicazioni terapeutiche umane. In vivo ed ex vivo basato su RNP genoma editing approcci sono in sviluppo a trattare o curare anche una varietà di condizioni, da malattie genetiche come Duchenne distrofia muscolare105 e cellule falciformi27 a L’HIV1129 e cancro. Interessante, Cas9 RNP viene impiegato sempre più come un metodo di consegna per ingegneria agricola perché permette di ‘DNA-free’ editing delle piante33,34,36.
The authors have nothing to disclose.
Ringraziamo il precedenti molti membri dei nostri laboratori e la comunità di editing di genoma Bay Area per il loro contributo allo sviluppo di questi metodi. Ringraziamo Ross Wilson per la lettura critica di questo manoscritto.
Ricerca di Alexander Marson è supportato da un regalo dal Jake Aronov e concedere un National Multiple Sclerosis Society (CA 1074-A-21). Alexander Marson detiene un premio alla carriera per gli scienziati medici del Burroughs Wellcome fondo ed è un investigatore di Biohub Zuckerberg Chan. Ricerca di Jacob E. Corn è supportato dai Li Ka Shing Foundation, il patrimonio Medical Research Institute Medical e il California Institute for Regenerative Medicine. Behnom Farboud e di Barbara J. Meyer ricerca è finanziata in parte dalla concessione NIGMS R01 GM030702 a Barbara J. Meyer, che è un ricercatore dell’Howard Hughes Medical Institute. Ricerca Erin Jarvis e Nipam H. Patel è stato in parte finanziata dalla sovvenzione NSF IOS-1257379 ed Erin Jarvis riconosce sostegno da un GRFP NSF e una borsa di studio Philomathia.
Reagents/Materials | |||
DNA oligonucleotides | Integrated DNA Technologies | – | IDT will provide custom DNA sequences, including those in Table 1 |
Guide RNAs | Synthego | – | Synthego will provide high-quality sgRNAs for S. pyogenes Cas9, including custom sgRNAs containing the targeting sequences included in Table 1 |
Purified Cas9 protein (EnGen Cas9 NLS, S. pyogenes) | New England Biosciences | M0646T | If possible, purifying Cas9 in-house or purchasing from local core facilities is a less expensive option |
Normal peripheral blood CD34+ stem/progenitor cells | AllCells | PB032-2 | |
StemSpan SFEM | StemCell Technologies | 09650 | |
StemSpan CC110 | StemCell Technologies | 02697 | |
P3 Primary Cell 4D-Nucleofector X Kit | Lonza | V4XP-3032 | |
RPMI-1640 Medium, With sodium bicarbonate, without L-glutamine, liquid | Sigma | R0883-6X500ML | |
EasySep™ Human T Cell Isolation Kit | Stemcell | 17951 | |
cell culture plate, 96 wells, round | Fisher Scientific | 3799 | |
CTS (Cell Therapy Systems) Dynabeads CD3/CD28 | Life Tech | 40203D | |
Reombinant Human IL-2 | UCSF Pharmacy | NA | |
SepMate-50 500-pack IVD | Stemcell Technologies | 85460 | |
OP50 Escherichia coli | Caenorhabditis Genetics Center | OP-50 | https://cgc.umn.edu/ |
Nematode Growth Media agar in petri dishes | – | – | See Stiernagle, T (ref. 59) |
Standard borosilicate glass capillaries with filament: 4 in (100 mm), 1/0.58 OD/ID | World Precision Instruments | 1B100F-4 | |
Single-barrel standard borosilicate glass capillaries: 6 in (152 mm), 2/1.12 OD/ID | World Precision Instruments | 1B200-6 | |
Cover glass; 24 × 50 mm | Thermo Fisher Scientific | 12-544E | |
Cover glass; 22 × 22 mm | Thermo Fisher Scientific | 12-518-105K | |
Apex LE agarose | Genesee Scientific | 20-102 | |
Halocarbon oil 700 | Sigma-Aldrich | H8898-100ML | |
pCFJ90 plasmid | Addgene | 19327 | |
Compressed nitrogen | – | ||
60 mM culture dishes | BD | ||
Capillary tubes with filament: 4 in (1.0 mm) | World Precision Instruments | T2100F-4 | |
Sylgard 184 | Dow Corning | ||
Petri dishes (100 × 15 mm) | – | ||
Tungsten wire (0.005 in. diameter) | Ted Pella | ||
Perfluoroalkoxy alkane (PFA) | – | ||
Marine salt | – | ||
9" pasteur pipettes | – | ||
Phenol red | – | ||
Nuclease-free water | – | ||
Equipment | |||
4D Nucleofector | Lonza | AAF-1002X | |
MZ75 Stereomicroscope | Leica | Out-of-production. Current model is the M80 Stereomicroscope | |
Axio Vert35 inverted phase contrast fluorescent microscope | Zeiss | Out-of-production. Current model is the Axio VertA.1 | |
Laser-based micropipette puller (for C. elegans protocol) | Sutter Instrument | FG-P2000 | |
Picoliter Microinjector (for C. elegans protocol) | Warner Instruments | PLI-100A | |
Three-axis Joystick oil hydraulic micromanipulator | Narishige International | MO-202U | |
Coarse manipulator | Narishige International | MMN-1 | |
Micropipette puller (for P. hawaiensis protocol) | Sutter Instrument | P-80/PC | |
Microinjector (for P. hawaiensis protocol) | Narishige | IM300 | |
Microloader pipette tips | Eppendorf | 5242956003 | |
NG-agar |