Aquí presentamos los protocolos para la homogeneización de detergente libre de células de mamíferos cultivadas basado en nitrógeno cavitación y posterior separación de las proteínas citosólicas y membrana-limitan por ultracentrifugación. Este método es ideal para el monitoreo de la partición de proteínas periféricas de membrana entre soluble y fracciones de la membrana.
Las células cultivadas son útiles para estudiar la distribución subcelular de proteínas, incluyendo proteínas de membrana periférica. Codificada genéticamente fluorescente etiquetadas proteínas han revolucionado el estudio de la distribución subcelular de la proteína. Sin embargo, es difícil cuantificar la distribución con microscopia fluorescente, especialmente cuando las proteínas son parcialmente citosólicas. Por otra parte, a menudo es importante para el estudio de proteínas endógenas. Bioquímicos de ensayos como immunoblots siguen siendo el estándar de oro para la cuantificación de la distribución de la proteína después de fraccionamiento subcelular. Aunque existen kits comerciales que tienen como objetivo aislar citosólica o ciertas fracciones de la membrana, la mayoría de estos kits se basa en la extracción con detergentes, que puede ser inadecuado para el estudio de proteínas de membrana periférica que se extraen fácilmente las membranas. Aquí presentamos un protocolo libre de detergente para celular homogeneización por nitrógeno cavitación y posterior separación de las proteínas citosólicas y membrana-limitan por ultracentrifugación. Confirman la separación de orgánulos subcelulares en soluble y fracciones de pellets a través de diferentes tipos de células y comparar la extracción de proteínas entre varios métodos de homogeneización mecánica no-base de detergente común. Entre varias ventajas de nitrógeno la cavitación es la superior eficacia de disrupción celular con daño mínimo de físico y químico delicada organelos. Combinado con ultracentrifugación, nitrógeno la cavitación es un método excelente para examinar el cambio de las proteínas periféricas de membrana entre citosólica y fracciones de la membrana.
Proteínas celulares se pueden dividir en dos clases: los que están asociados a membranas y aquellos que no son. No-membrana las proteínas asociadas se encuentran en el citosol, nucleoplasia y lumina de orgánulos como el retículo endoplásmico (ER). Hay dos clases de proteínas asociadas a membrana, integrales y periféricas. Proteínas integrales de membrana también son conocidas como proteínas transmembranales porque uno o más segmentos de la cadena polipeptídica atraviesa la membrana, por lo general como una α-hélice compuesta de aminoácidos hidrofóbicos. Proteínas transmembranales co-translationally se insertan en las membranas en el curso de su biosíntesis y permanecerán así configuradas hasta que catabolizan. Proteínas de la membrana periférica secundario son conducidas a las membranas, generalmente como consecuencia de la modificación poste-de translación con moléculas hidrofóbicas como los lípidos. En contraste con las proteínas de membrana integral, la Asociación de las proteínas periféricas de membrana con las membranas celulares es reversible y puede ser regulada. Muchos periférica de membrana proteínas función en vías de señalización y asociación regulada con membranas es uno de los mecanismos de activación o inhibición de una vía. Un ejemplo de una molécula de señalización que es una proteína periférica de membrana es la pequeña GTPasa, RAS. Después de una serie de modificaciones post-traduccionales que incluyen modificación con un lípido farnesil, el c-término modificado de una proteína madura de RAS inserta en el folleto de citoplásmico de la membrana celular. En concreto, la membrana plasmática es donde el RAS se dedica a su efector downstream RAF1. Para evitar la activación constitutiva de vía de mitógeno-activada proteína quinasa (MAPK), varios niveles de control de RAS están en lugar. Además de renderización RAS inactivo por hidrolizando GTP en PIB, RAS activa también se puede lanzar desde la membrana plasmática por modificaciones o interacciones con factores para inhibir la señalización de solubilización. Aunque la proyección de imagen vivo fluorescente ofrece a biólogos de célula la oportunidad de observar la localización subcelular de fluorescente etiquetado proteína periférica de membrana proteínas1, existe una necesidad crítica para evaluar la Asociación de la membrana de proteínas endógenas semi-cuantitativamente con enfoques bioquímicos simples.
La evaluación bioquímica adecuada de proteína repartir entre fracciones solubles y de membrana es críticamente dependiente de dos factores: celular homogeneización y eficiente separación de fracciones solubles y de membrana. Aunque algunos de los protocolos, incluyendo los kits comercializados más utilizados, dependen de homogeneización de la célula base de detergente, estos métodos pueden confundir análisis mediante la extracción de proteínas de la membrana en la fase soluble2. Por consiguiente, no detergente mecánicos, basado en métodos de disrupción celular proporcionan resultados limpiador. Existen varios métodos de interrupción mecánica de células cultivadas en cultivo o cosecha de sangre o de órganos. Estos incluyen Dounce homogeneización, interrupción de fina de la aguja, rodamientos de bolas homogeneización, sonicación y cavitación de nitrógeno. Aquí evaluamos cavitación de nitrógeno y se compara con otros métodos. Cavitación de nitrógeno depende del nitrógeno que está disuelto en el citoplasma de las células bajo alta presión. Después de equilibrar, la suspensión de células se expone bruscamente a la presión atmosférica que burbujas de nitrógeno se forman en el citoplasma que rasgar abierto la célula como consecuencia de su efervescencia. Si la presión es suficientemente alta, efervescencia de nitrógeno puede perturbar el núcleo3 y membrana destino organelos como lisosomas4. Sin embargo, si la presión se mantiene lo suficientemente baja, la descompresión alteran la membrana plasmática y ER pero no otros organelos, derramando así citosol y orgánulos citoplásmicos intactos en el homogeneizado que se señala el cavitate5. Por esta razón, la cavitación de nitrógeno es el método de elección para aislar organelos como lisosomas y mitocondrias.
Sin embargo, también es una excelente manera de preparar un homogeneizado que puede ser fácilmente separado en fracciones solubles y de membrana. El recipiente del reactor (de aquí en adelante llamado “la bomba”) usado durante la cavitación consiste en una carcasa de acero inoxidable grueso que soporta alta presión, con una entrada para la entrega del gas nitrógeno desde un tanque y un puerto de salida con una válvula de descarga ajustable.
Cavitación de nitrógeno se ha utilizado para la homogeneización de la célula desde la década de 19606. En 1961, cazador y Commerfold7 estableció cavitación de nitrógeno como una opción viable para la interrupción de tejidos de mamíferos. Desde entonces, los investigadores han adaptado la técnica a diferentes células y tejidos con éxito y cavitación de nitrógeno se ha convertido en una grapa en múltiples aplicaciones, incluyendo membrana preparación8,9, núcleos y organelas preparación10,11y extracción bioquímica lábil. En la actualidad, biólogos de la célula más a menudo emplean otros métodos de homogeneización de la célula porque las ventajas de la homogeneización de nitrógeno no han sido ampliamente anunciadas, bombas de nitrógeno son caras y hay una idea errónea de que un número relativamente grande de células es Obligatorio. No se han publicado protocolos para la cavitación de nitrógeno alcanzar homogenados sin células con núcleos intactos, y en evaluaciones más publicadas se utilizaron volúmenes de 20 mL de la suspensión celular. Para adaptar esta técnica clásica para los requerimientos actuales de trabajar con muestras pequeñas, presentamos un protocolo modificado de cavitación de nitrógeno diseñado específicamente para las células cultivadas. Después de la cavitación del nitrógeno, el homogenado se separa en fracciones de membrana (P) y soluble (S) por centrifugación diferencial, primero con un exprimido a velocidad baja para extraer los núcleos y células intactas y luego con un exprimido a alta velocidad (> 100.000 x g) para separar membranas de la fracción soluble. Analizar la eficiencia de la separación con los immunoblots y comparar cavitación de nitrógeno con otras técnicas de interrupción mecánica. También investigamos el efecto osmótico de buffer de homogenización durante la cavitación de nitrógeno.
Son múltiples las ventajas de la cavitación de nitrógeno sobre otros métodos de alteración mecánica. Quizás el beneficio más significativo es su capacidad para suavemente y eficientemente homogeneizar a muestras. Los principios físicos de descompresión enfría muestras en lugar de generar daño de calentamiento local como ultrasonidos y fricción/cizallamiento basado en técnicas. La cavitación también es extremadamente eficaz en alterar la membrana plasmática. Porque el nitrógeno de las burbujas se generan…
The authors have nothing to disclose.
Este trabajo fue financiado por GM055279, CA116034 y CA163489.
Cell Disruption Vessel (45 mL) | Parr Instrument | 4639 | Nitrogen cavitation Bomb |
Dounce homogenizer (2 mL) | Kontes | 885300-0002 | Dounce pestle and tube |
U-100 Insulin Syringe 28G½ | Becton Dickinson | 329461 | Needle |
Atg12 antibody | Santa Cruz | 271688 | Mouse antibody, use at 1:1000 dilution |
β-actin antibody | Santa Cruz | 47778 | Mouse antibody, use at 1:1000 dilution |
β-tubulin antibody | DSHB | E7-s | Mouse antibody, use at 1:5000 dilution |
Calnexin antibody | Santa Cruz | 23954 | Mouse antibody, use at 1:1000 dilution |
Calregulin antibody | Santa Cruz | 373863 | Mouse antibody, use at 1:1000 dilution |
Catalase antibody | Santa Cruz | 271803 | Mouse antibody, use at 1:1000 dilution |
CIMPR antibody | Abcam | 124767 | Rabbit antibody, use at 1:1000 dilution |
EEA1 antibody | Santa Cruz | 137130 | Mouse antibody, use at 1:1000 dilution |
EGFR antibody | Santa Cruz | 373746 | Mouse antibody, use at 1:1000 dilution |
F0-ATPase antibody | Santa Cruz | 514419 | Mouse antibody, use at 1:1000 dilution |
F1-ATPase antibody | Santa Cruz | 55597 | Mouse antibody, use at 1:1000 dilution |
Fibrillarin antibody | Santa Cruz | 374022 | Mouse antibody, use at 1:200 dilution |
Golgin 97 antibody | Santa Cruz | 59820 | Mouse antibody, use at 1:1000 dilution |
HDAC1 antibody | Santa Cruz | 81598 | Mouse antibody, use at 1:1000 dilution |
Hexokinase 1 antibody | Cell Signaling Technology | 2024S | Rabbit antibody, use at 1:1000 dilution |
Lamin A/C antibody | Santa Cruz | 376248 | Mouse antibody, use at 1:1000 dilution |
LAMP1 antibody | DSHB | H4A3-c | Mouse antibody, use at 1:1000 dilution |
Na+/K+ ATPase antibody | Santa Cruz | 48345 | Mouse antibody, use at 1:1000 dilution |
Rab7 antibody | Abcam | 137029 | Rabbit antibody, use at 1:1000 dilution |
Rab9 antibody | Thermo | MA3-067 | Mouse antibody, use at 1:1000 dilution |
RCAS1 antibody | Santa Cruz | 398052 | Mouse antibody, use at 1:1000 dilution |
RhoGDI antibody | Santa Cruz | 360 | Rabbit antibody, use at 1:3000 dilution |
Ribosomal protein S6 antibody | Santa Cruz | 74459 | Mouse antibody, use at 1:1000 dilution |
Sec61a antibody | Santa Cruz | 12322 | Goat antibody, use at 1:1000 dilution |
Thickwall Polycarbonate ultracentrifuge tube | Beckman Coulter | 349622 | Sample tube for ultracentrifugation |
TLK-100.3 rotor | Beckman Coulter | 349481 | rotor for ultracentrifugation |
Optima MAX High-Capacity Personal Ultracentrifuge | Beckman Coulter | 364300 | ultracentrifuge |
cOmplete protease inhibitor cocktail tablets | Roche | 11697498001 | protease inhibitors |
Cell Scrapers with 25cm Handle and 3.0cm Blade | Corning | 353089 | large cell scraper |
Magnetic Stir Bar | Fisher Scientific | 14-513-57SIX | micro stir bar |
Ceramic-Top Magnetic Stirrer | Fisher Scientific | S504501AS | magnetic stirrer |