Summary

Развитие стволовых клеток, полученных из антиген-специфических регуляторных Т-клеток против аутоиммунитета

Published: November 08, 2016
doi:

Summary

We present here a method to develop functional antigen (Ag)-specific regulatory T cells (Tregs) from induced pluripotent stem cells (iPSCs) for immunotherapy of autoimmune arthritis in a murine model.

Abstract

Аутоиммунные заболевания возникают из-за потери иммунологической аутотолерантности. Регуляторные Т-клетки (Tregs) являются важными медиаторами иммунологической аутотолерантности. Tregs составляют около 5 – 10% от зрелого субпопуляции CD4 + Т – клеток у мышей и людей, с примерно 1 – 2% от тех Tregs , циркулирующих в периферической крови. Индуцированные плюрипотентные стволовые клетки (ИПСК) можно дифференцировать в функциональную Tregs, которые имеют потенциал для использования в клеточной терапии аутоиммунных заболеваний. Здесь мы представляем метод для разработки антигена (Ag) Tregs из – специфических ИПСК (т.е. IPSC-Tregs). Метод основан на включении фактор транскрипции FoxP3 и антиген-специфические Т-клеточного рецептора (TCR) в ИПСК, а затем дифференцированием по OP9 стромальных клеток, экспрессирующих Notch лигандов дельта-подобный (DL), 1 и DL4. После дифференцировки в пробирке, в IPSC-Tregs экспрессировать CD4, CD8, CD3, CD25, FoxP3 и АГ-специфических TCR и способны реагировать на стимуляцию Ag.Этот метод был успешно применен к клеточной терапии аутоиммунного артрита в мышиной модели. Приемные передачи этих Ag-специфической иПСК-Tregs в Ag-индуцированного артрита (AIA) водоносного мышей обладает способностью снижать воспаление суставов и отек и предотвратить потерю костной массы.

Introduction

Autoimmune arthritis is a systemic disease characterized by hyperplasia of synovial tissue and progressive destruction of articular cartilage, bone, and ligaments1. The defective generation or function of Tregs in autoimmune arthritis contributes to chronic inflammation and tissue injury because Tregs play a crucial role in preventing the development of auto-reactive immune cells.

Manipulation of Tregs is an ideal strategy for the development of therapies to suppress inflammation in an Ag-dependent manner. For Treg-based immunotherapy, the specificity of the transferred Tregs is important for the treatment of ongoing autoimmunity2. To exhibit the suppressive activity, Tregs need to migrate and be retained at the afflicted region, which can be directed by the specificity of the TCR for the Ag at that location3. Although polyclonal Tregs may contain a small population containing this Ag specificity from their TCRs, the numbers of these Ag-specific Tregs are usually low. Consequently, cell-based therapies using polyclonal Tregs against autoimmune disorders require adoptive transfers of a large number of Tregs4,5. Because pluripotent stem cells (PSCs) have the ability to develop into any type of cell, Ag-specific PSC-Tregs may prove to be good candidates for Treg-based immunotherapy. Previous studies have shown the successful development of PSC-derived T cells, including Tregs6-8.

Here, we describe a protocol to develop Ag-specific iPSC-Tregs. We further describe a cell-based therapy of autoimmune arthritis in a murine model using such Tregs. This method is based upon genetically modifying murine iPSCs with Ag-specific TCRs and the transcriptional factor FoxP3. The engineered iPSCs then differentiate into Ag-specific Tregs on the OP9 stromal cells expressing Notch ligands DL1, DL4, and MHC-II (I-Ab) molecules in the presence of cytokines mFlt3L and mIL-7. These Ag-specific iPSC-Tregs can produce suppressive cytokines, such as TGF-β and IL-10, when stimulated with the Ag, and adoptive transfer of such Tregs has the ability to suppress AIA development in a murine model. The described protocol can be used to develop stem cell-derived Ag-specific Tregs for potential therapeutic interventions.

Protocol

Все эксперименты на животных одобрены Университета штата Пенсильвания колледжа медицины животных комитета Care (IACUC протокол № 45470) и проводятся в соответствии с руководящими принципами ассоциации по оценке и аккредитации лабораторных животных. 1. стволовой клетки культу…

Representative Results

Как показано здесь, на 28-й день, Ag специфические Tregs существенно выражены CD3 и Ag-специфический TCR, два маркера Т-клеток. Население CD3 + TCRVβ5 + выражается CD4. Большинство клеток CD3 + TCRVβ5 + CD4 + CD25 также выраженными, CD127 и CTLA-4, которые , как правило , выр…

Discussion

В этом протоколе, важным шагом является дифференциация в пробирке TCR / FOXP3 ген-трансдуцированных ИПСК. В пробирке передача сигналов Notch индуцирует развитие к клеточной линии Т. Чтобы дифференцировать ИПСК в CD4 + FoxP3 + Tregs, мы использовали клетки б OP9-DL1 / DL4 / IA, котор…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Этот проект был профинансирован, в частности, в рамках грантов от Национального института здоровья (R01AI121180, R21AI109239 и K18CA151798), Американской ассоциации диабета (1-16-IBS-281) и Пенсильвании Департамент здравоохранения (Табак Расчетно фонды) в JS

Materials

C57BL/6j mice Jackson Laboratory 664
B6.129S7 Rag1tm1Mom/J Jackson Laboratory 2216
Anti-CD3 (2C11) antibody BD Pharmingen 553058
Anti-CD28 (37.51) antibody BD Pharmingen 553295
Anti-CD4 (GK1.5) antibody Biolegend 100417
Anti-CD8 (53–6.7) antibody Biolegend 100714
Anti-CD25 (3C7) antibody Biolegend 101912
Anti-TCR-β (H57597) antibody Biolegend 109220
Anti-IL10 Biolegend 505010
Anti-TGFβ Biolegend 141402
DMEM Invitrogen ABCD1234
α-MEM Invitrogen A10490-01
FBS Hyclone SH3007.01
Brefeldin A Sigma B7651
Polybrene Sigma 107689
Genejammer Integrated science 204130
ACK Lysis buffer Lonza 10-548E
mFlt-3L peprotech 250-31L
mIL-7 peprotech 217-17
Gelatin Sigma G9391
Paraformaldehyde Sigma P6148-500G Caution: Allergenic, Carcenogenic, Toxic
Permeabilization buffer Biolegend 421002
mBSA Sigma A7906
Ova albumin Avantor 0440-01
CFA Difco 2017014
Tailveiner restrainer Braintree scientific RTV 150-STD

References

  1. Firestein, G. S. Evolving concepts of rheumatoid arthritis. Nature. 423, 356-361 (2003).
  2. Ferraro, A., et al. Interindividual variation in human T regulatory cells. Proc Natl Acad Sci U S A. 111, E1111-E1120 (2014).
  3. Tang, Q., et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 199, 1455-1465 (2004).
  4. van Herwijnen, M. J., et al. Regulatory T cells that recognize a ubiquitous stress-inducible self-antigen are long-lived suppressors of autoimmune arthritis. Proc Natl Acad Sci U S A. 109, 14134-14139 (2012).
  5. Wright, G. P., et al. Adoptive therapy with redirected primary regulatory T cells results in antigen-specific suppression of arthritis. Proc Natl Acad Sci U S A. 106, 19078-19083 (2009).
  6. Schmitt, T. M., et al. Induction of T cell development and establishment of T cell competence from embryonic stem cells differentiated in vitro. Nat Immunol. 5, 410-417 (2004).
  7. La Motte-Mohs, R. N., Herer, E., Zuniga-Pflucker, J. C. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood. 105, 1431-1439 (2005).
  8. Lei, F., Haque, R., Weiler, L., Vrana, K. E., Song, J. T lineage differentiation from induced pluripotent stem cells. Cell Immunol. 260, 1-5 (2009).
  9. Lei, F., Haque, R., Xiong, X., Song, J. Directed differentiation of induced pluripotent stem cells towards T lymphocytes. J Vis Exp. , e3986 (2012).
  10. Lei, F., et al. In vivo programming of tumor antigen-specific T lymphocytes from pluripotent stem cells to promote cancer immunosurveillance. Cancer Res. 71, 4742-4747 (2011).
  11. Haque, R., et al. Programming of regulatory T cells from pluripotent stem cells and prevention of autoimmunity. J Immunol. 189, 1228-1236 (2012).
  12. Chi, V., Chandy, K. G. Immunohistochemistry: paraffin sections using the Vectastain ABC kit from vector labs. J Vis Exp. , (2007).
  13. Lu, L., et al. Critical role of all-trans retinoic acid in stabilizing human natural regulatory T cells under inflammatory conditions. Proc Natl Acad Sci U S A. 111, E3432-E3440 (2014).
  14. Wu, C., et al. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity. 41, 270-282 (2014).
  15. Di Stasi, A., et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 365, 1673-1683 (2011).
  16. Ramos, C. A., et al. An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. Stem Cells. 28, 1107-1115 (2010).
  17. Haque, R., Lei, F., Xiong, X., Wu, Y., Song, J. FoxP3 and Bcl-xL cooperatively promote regulatory T cell persistence and prevention of arthritis development. Arthritis Res Ther. 12, R66 (2010).
  18. van Loenen, M. M., et al. Mixed T cell receptor dimers harbor potentially harmful neoreactivity. Proc Natl Acad Sci U S A. 107, 10972-10977 (2010).
  19. Kim, Y. C., et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood. 125, 1107-1115 (2015).
  20. Himburg, H. A., et al. Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nat Med. 16, 475-482 (2010).

Play Video

Cite This Article
Haque, M., Fino, K., Sandhu, P., Song, J. Development of Stem Cell-derived Antigen-specific Regulatory T Cells Against Autoimmunity. J. Vis. Exp. (117), e54720, doi:10.3791/54720 (2016).

View Video