Summary

Характеристика Multi-субъединица белковых комплексов человеческого MxA Использование неденатурирующем электрофорез на полиакриламидном геле

Published: October 28, 2016
doi:

Summary

This article describes a simple and rapid protocol to evaluate the oligomeric state of the dynamin-like GTPase MxA protein from lysates of human cells using a combination of non-denaturing PAGE with western blot analysis.

Abstract

The formation of oligomeric complexes is a crucial prerequisite for the proper structure and function of many proteins. The interferon-induced antiviral effector protein MxA exerts a broad antiviral activity against many viruses. MxA is a dynamin-like GTPase and has the capacity to form oligomeric structures of higher order. However, whether oligomerization of MxA is required for its antiviral activity is an issue of debate. We describe here a simple protocol to assess the oligomeric state of endogenously or ectopically expressed MxA in the cytoplasmic fraction of human cell lines by non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with Western blot analysis. A critical step of the protocol is the choice of detergents to prevent aggregation and/or precipitation of proteins particularly associated with cellular membranes such as MxA, without interfering with its enzymatic activity. Another crucial aspect of the protocol is the irreversible protection of the free thiol groups of cysteine residues by iodoacetamide to prevent artificial interactions of the protein. This protocol is suitable for a simple assessment of the oligomeric state of MxA and furthermore allows a direct correlation of the antiviral activity of MxA interface mutants with their respective oligomeric states.

Introduction

Четвертичная структура белка, играет решающую роль во многих клеточных процессах. Сигнальных путей, экспрессии генов и ферментов активация / деактивация все полагаются на правильность сборки белковых комплексов 1-4. Этот процесс также известен как гомо- или гетеро-олигомеризации происходит из-за необратимого ковалентного или обратимых электростатических и гидрофобных взаимодействий белок-белок. Олигомеризации не только разнообразит различные клеточные процессы , без увеличения размера генома, но также обеспечивает стратегию для белков , чтобы построить устойчивые комплексы, которые более устойчивы по отношению к денатурации и деградации 5. Дефекты в олигомеризации оказывают влияние на функцию белков и может привести к развитию заболеваний. Например, фермент фенилаланин гидроксилазы образует тетрамерный комплекс. Некоторые мутации в белковом комплексе может ослабить образование тетрамерное и приводят к фенилкетонурии болезни 6.

<p class = "jove_content"> Белок MxA человек представляет собой интерферон (ИФН) индуцированный противовирусную эффекторной белка , оказывающего широкий противовирусной активностью в отношении различных РНК, а также ДНК – вирусов 7. Он относится к надсемейства динамина подобных крупных ГТФаз и обладает способностью образовывать большие олигомерные структуры в пробирке 8. Олигомеризация было предложено , чтобы защитить MxA от быстрой деградации 9,10. Несмотря на интенсивные усилия многих исследовательских групп, молекулярный механизм действия остается в значительной степени неуловимым и роль олигомеризации состояния MxA для своей противовирусной функции находится на стадии обсуждения 9,11,12. В связи с этим, Гао и его коллеги предложили модель , где MxA проявляет свою противовирусную активность при взаимодействии с вирусными нуклеопротеидами в виде крупных кольцевых олигомерных структур 11. Тем не менее, в последнее время , мы показали , что MxA димеры обладают противовирусной активностью и взаимодействуют с нуклеопротеида вируса гриппа А 12. ВAsed на кристаллическую структуру MxA, Гао и его коллеги определили несколько аминокислотных остатков в интерфейсных областях , которые имеют решающее значение для его олигомеризации в пробирке и его противовирусной функции 11,13. Поэтому для того, чтобы выяснить, который олигомерные состояние MxA проявляет противовирусную активность, мы стремились создать простой протокол для быстрого определения oligmeric состояния интерфейса мутантов MxA, выраженные в клетках человека, а также эндогенными MxA выраженное после стимуляции IFN &.

Хотя существует много методов, которые обычно используются для исследования взаимодействия между белками , такими как белок сплит-зеленый флуоресцентный (сплит-GFP) комплементационная анализ 14, поверхностного плазмонного резонанса 15 и Ферстер резонансный перенос энергии (FRET) 16, они не обеспечивают информация о точной стехиометрии олигомерного белкового комплекса. Для исследования этого конкретного аспекта, методы, такие какмульти-угол рассеяния света (MALS) 17 и аналитической ультрацентрифугирования 18 очень полезны. Как правило, белки анализировали с помощью этих методов являются очищенные белки. Процессы олигомеризации может также зависеть от других клеточных факторов. Если эти факторы неизвестны, анализ является более трудным. Кроме того, некоторые белки трудно выразить в Е. палочки и очистить. Таким образом, эти методы не являются оптимальным выбором для анализа белка олигомеризации в клеточной среде. Кроме того, эти методы требуют дорогих инструментов, которые не легко доступны.

Non-денатурирующих электрофореза в полиакриламидном геле (ПААГ), гель -проникающей хроматографии или химического сшивания с последующим обычным додецилсульфата натрия (SDS) -page являются полезными инструментами для характеристики образования олигомеров из клеточных лизатов 2,19,20. Эти методы не требуют специального оборудования и может быть легко реrformed в стандартной лаборатории. Первоначально мы оценивали различные химические сшивающие протоколы, которые инвариантно привели к неспецифической агрегации и осаждению МХА. Таким образом, мы в следующий раз испытал протоколы СТР неденатурирующем. В качестве не денатурирующее СТР исключает использование SDS, миграция белков зависит от их родного заряда. Сине-нативный страница использует кумасси бриллиантовым синим G250 , чтобы загрузить белки с общим отрицательным зарядом, аналогично SDS, но не денатурации белка 21. К сожалению, кумасси бриллиантовый синий осаждается в присутствии высоких солей и двухвалентных катионов (например , Mg 2+) , которые часто включают в лизиса буферов. В зависимости от используемых буферов, может быть трудно анализировать образец без дальнейшей оптимизации шагов, которые могли бы оказать влияние на олигомерного белкового комплекса.

Здесь мы приведем простой протокол , основанный на ранее опубликованного метода 22 , чтобы определить , олигомеризациюбелок человеческого MxA полученный из клеточных лизатов с использованием неденатурирующем PAGE.

Protocol

Примечание: Этот протокол основан на опубликованной ранее неденатурирующих протокола стр.12. В этом исследовании олигомерного состояния белка МхА оценивали с использованием либо клеток Vero с гиперэкспрессией MxA или ИФН-альфа-стимулированных клеток A549, экспрессирующих эндогенный…

Representative Results

Используя неденатурирующем PAGE, мы проанализировали олигомерного состояния дикого типа человека МхА, димерные интерфейс мутанты MxA (R640A) и MxA (L617D), а также мономерной интерфейса мутанта МхА (M527D) из клеточных лизатов 12. Клетки лизируют в буфере , содержащем 1% октилфеноксиполиэтоксиэ?…

Discussion

Здесь мы опишем простой метод, который позволяет быстрое определение олигомерных состояния белков, экспрессированных в клетках млекопитающих путем неденатурирующем ПААГ с последующим Вестерн-блот-анализа. Основное преимущество этого подхода состоит в том, что олигомерные состояние…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by a Grant from the Swiss National Science foundation (Grant nr. 31003A_143834) to JP.

Materials

Slide-A-Lyzer MINI Dialysis Units, 10K MWCO, 0.5 mL Thermo Fisher Scientific 69570 Pre-equilibrate in dialysis buffer ( if Glycerol removal is desired)
Can be self-made according to Fiala et al. 2011
4–15% Mini-PROTEAN TGX Precast Protein Gels, 10-well, Bio-Rad 456-1083 Pre-run in running buffer to adjust buffer system
cOmplete, Mini, EDTA-free Roche  11836170001 use 1 tablet per 50 ml
PBS, pH 7.4  bottle a 500ml Gibco Thermo Fisher Scientific 14190-094
Ponceau S solution Sigma-Aldrich P7170 toxic! wear gloves and protect eyes!
NativeMark Unstained Protein Standard  50ul Invitrogen P/N 57030 load 5 ul/well
A549 cells ATCC ATCC CCL185 Grow in growth medium (see Table 1)
Vero cells ATCC ATCC CCL81 Grow in growth medium (see Table 1)
anti-Mx1 antibody Novus Biologicals H00004599_D01P Use at a 1:1000 dilution
ECL Anti-rabbit IgG, Horseradish Peroxidase linked whole antibody (from donkey) GE-Healthcare NA934V Use at a 1:10000 dilution
0.5% Trypsin-EDTA (1x)        Life Technologies Thermo Fisher 15400-054
Iodoacetamide   5g Sigma-Aldrich I-6125 stock  100mM
Bromphenolblue Sigma-Aldrich B0126-25G
DMEM +4.5g/l Gluc,+L-Glut,+Pyruvate life technologies Thermo Fisher Scientific 41966-029
Pen  Strep 100 x     100ml               life technologies Thermo Fisher Scientific 15140 – 130
Glutamax 100xStock, 100ml     life technologies Thermo Fisher Scientific 350500-038
Fetal Bovine Serum, Dialyzed , US Origin 500ml Gibco Lot:42G9552K Thermo Fisher Scientific 10270-106
Cellulose filter paper Bio-Rad 1703965
PVDV blotting  membrane GE-Healthcare 10600022
Tris(hydroxymethyl)aminomethane Biosolve 0020092391BS
sodium fluoride (NaF) Sigma Aldrich S-7920
NP-40 Calbiochem 492015
cOmplete, Mini, EDTA-free Roche  11836170001
Tween 20 Calbiochem 6555204
CHAPS 10% solution Amresco N907
DL-Dithiothreitol (DTT) Sigma Aldrich 43819
Glycine Biosolve 0007132391BS
sodium orthovanadate (Na3VO4) Sigma Aldrich 450243
Glycerol Sigma Aldrich G7757
b-Glycerophospate Sigma Aldrich G9422
Milk powder Migros/Switzerland
Methanol Millipore 1.06009
sodium cloride (NaCl) Sigma Aldrich 71380
magnesium chloride (MgCl2) Amresco 288
Sodium dodecyl sulphate (SDS) Sigma Aldrich L4509
sodium hydroxide (NaOH) Sigma Aldrich S-8045

References

  1. Baisamy, L., Jurisch, N., Diviani, D. Leucine zipper-mediated homo-oligomerization regulates the Rho-GEF activity of AKAP-Lbc. J Biol Chem. 280, 15405-15412 (2005).
  2. Chen, C. P., Posy, S., Ben-Shaul, A., Shapiro, L., Honig, B. H. Specificity of cell-cell adhesion by classical cadherins: Critical role for low-affinity dimerization through beta-strand swapping. Proc Natl Acad Sci U S A. 102, 8531-8536 (2005).
  3. Jackson-Fisher, A. J., Chitikila, C., Mitra, M., Pugh, B. F. A role for TBP dimerization in preventing unregulated gene expression. Mol Cell. 3, 717-727 (1999).
  4. Torshin, I. Activating oligomerization as intermediate level of signal transduction: analysis of protein-protein contacts and active sites in several glycolytic enzymes. Front Biosci. 4, 557-570 (1999).
  5. Goodsell, D. S., Olson, A. J. Structural symmetry and protein function. Annu Rev Biophys Biomol Struct. 29, 105-153 (2000).
  6. Flydal, M. I., Martinez, A. Phenylalanine hydroxylase: function, structure, and regulation. IUBMB Life. 65, 341-349 (2013).
  7. Haller, O., Kochs, G. Human MxA protein: an interferon-induced dynamin-like GTPase with broad antiviral activity. J Interferon Cytokine Res. 31, 79-87 (2011).
  8. Haller, O., Staeheli, P., Schwemmle, M., Kochs, G. Mx GTPases: dynamin-like antiviral machines of innate immunity. Trends Microbiol. 23, 154-163 (2015).
  9. Di Paolo, C., Hefti, H. P., Meli, M., Landis, H., Pavlovic, J. Intramolecular backfolding of the carboxyl-terminal end of MxA protein is a prerequisite for its oligomerization. J Biol Chem. 274, 32071-32078 (1999).
  10. Janzen, C., Kochs, G., Haller, O. A monomeric GTPase-negative MxA mutant with antiviral activity. J Virol. 74, 8202-8206 (2000).
  11. Gao, S., et al. Structure of myxovirus resistance protein a reveals intra- and intermolecular domain interactions required for the antiviral function. Immunity. 35, 514-525 (2011).
  12. Nigg, P. E., Pavlovic, J. Oligomerization and GTP-binding Requirements of MxA for Viral Target Recognition and Antiviral Activity against Influenza A Virus. J Biol Chem. 290, 29893-29906 (2015).
  13. Gao, S., et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature. 465, 502-506 (2010).
  14. Ghosh, I., Hamilton, A. D., Regan, L. Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. J Am Chem Soc. 122, 5658-5659 (2000).
  15. Patching, S. G. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery. Biochim Biophys Acta. 1838, 43-55 (2014).
  16. Kenworthy, A. K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy. Methods. 24, 289-296 (2001).
  17. Wyatt, P. J. Light-Scattering and the Absolute Characterization of Macromolecules. Analytica Chimica Acta. 272 (93), 1-40 (1993).
  18. Howlett, G. J., Minton, A. P., Rivas, G. Analytical ultracentrifugation for the study of protein association and assembly. Curr Opin Chem Biol. 10, 430-436 (2006).
  19. Fiala, G. J., Schamel, W. W., Blumenthal, B. Blue native polyacrylamide gel electrophoresis (BN-PAGE) for analysis of multiprotein complexes from cellular lysates. J Vis Exp. , (2011).
  20. Zou, H., Li, Y., Liu, X., Wang, X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 274, 11549-11556 (1999).
  21. Schagger, H., Cramer, W. A., von Jagow, G. Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem. 217, 220-230 (1994).
  22. Walker, J. M. Nondenaturing polyacrylamide gel electrophoresis of proteins. Methods Mol Biol. 32, 17-22 (1994).
  23. Stoscheck, C. M. Quantitation of protein. Methods Enzymol. 182, 50-68 (1990).
  24. Wisskirchen, C., Ludersdorfer, T. H., Muller, D. A., Moritz, E., Pavlovic, J. Interferon-induced antiviral protein MxA interacts with the cellular RNA helicases UAP56 and URH49. J Biol Chem. 286, 34743-34751 (2011).
  25. Stertz, S., et al. Interferon-induced, antiviral human MxA protein localizes to a distinct subcompartment of the smooth endoplasmic reticulum. J Interferon Cytokine Res. 26, 650-660 (2006).
  26. Seddon, A. M., Curnow, P., Booth, P. J. Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta. 1666, 105-117 (2004).
  27. Kochs, G., Haener, M., Aebi, U., Haller, O. Self-assembly of human MxA GTPase into highly ordered dynamin-like oligomers. J Biol Chem. 277, 14172-14176 (2002).
  28. Kochs, G., Haller, O. GTP-bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae). J Biol Chem. 274, 4370-4376 (1999).
  29. Reichelt, M., Stertz, S., Krijnse-Locker, J., Haller, O., Kochs, G. Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic. 5, 772-784 (2004).
  30. Wisskirchen, C., Ludersdorfer, T. H., Muller, D. A., Moritz, E., Pavlovic, J. The cellular RNA helicase UAP56 is required for prevention of double-stranded RNA formation during influenza A virus infection. J Virol. 85, 8646-8655 (2011).

Play Video

Cite This Article
Nigg, P. E., Pavlovic, J. Characterization of Multi-subunit Protein Complexes of Human MxA Using Non-denaturing Polyacrylamide Gel-electrophoresis. J. Vis. Exp. (116), e54683, doi:10.3791/54683 (2016).

View Video