Summary

En profondeur Physiological Analyse des populations de cellules définies dans le tissu Tranches aiguë de l'Vomeronasal Organ Souris

Published: September 10, 2016
doi:

Summary

Here, we describe a physiological approach that allows identification and in-depth analysis of a defined population of sensory neurons in acute coronal tissue slices of the mouse vomeronasal organ using whole-cell patch-clamp recordings.

Abstract

In most mammals, the vomeronasal organ (VNO) is a chemosensory structure that detects both hetero- and conspecific social cues. Vomeronasal sensory neurons (VSNs) express a specific type of G protein-coupled receptor (GPCR) from at least three different chemoreceptor gene families allowing sensitive and specific detection of chemosensory cues. These families comprise the V1r and V2r gene families as well as the formyl peptide receptor (FPR)-related sequence (Fpr-rs) family of putative chemoreceptor genes. In order to understand the physiology of vomeronasal receptor-ligand interactions and downstream signaling, it is essential to identify the biophysical properties inherent to each specific class of VSNs.

The physiological approach described here allows identification and in-depth analysis of a defined population of sensory neurons using a transgenic mouse line (Fpr-rs3-i-Venus). The use of this protocol, however, is not restricted to this specific line and thus can easily be extended to other genetically modified lines or wild type animals.

Introduction

La plupart des animaux comptent beaucoup sur leurs sens chimiques pour interagir avec leur environnement. Le sens de l'odorat joue un rôle essentiel pour la recherche et l'évaluation des aliments, éviter les prédateurs et la recherche de partenaires d'accouplement appropriés. Dans la plupart des mammifères, le système olfactif est constitué d'au moins quatre sous – systèmes anatomiquement et fonctionnellement distincts périphériques: l'épithélium olfactif principal 1,2, 3,4 ganglion Grueneberg, l'organe septale Masera 5,6 et l'organe voméronasal. Le VNO comprend la structure sensorielle périphérique du système olfactif accessoire (AOS), qui joue un rôle majeur dans la détection des signaux chimiques qui transmettent des informations sur l' identité, le sexe, le rang social et de l' état ​​sexuel 7-10. Le VNO est situé à la base de la cloison nasale juste au-dessus du palais. Chez la souris, il est un tube borgne se terminant bilatéral enfermées dans une capsule cartilagineuse 13/11. L'organe se compose de deux un épithélium sensoriel médial en forme de croissantlium qui abrite les VSN et d'une partie non-sensorielle sur le côté latéral. Entre les deux épithéliums se trouve une lumière de mucus rempli qui est relié à la cavité nasale par l'intermédiaire du voméronasal canal étroit 14. Un grand vaisseau sanguin latéral dans le tissu non-sensorielle fournit un mécanisme de pompage vasculaire pour faciliter l' entrée des molécules relativement grandes, essentiellement non volatiles , tels que des peptides ou de petites protéines dans la lumière à travers VNO pression négative 15,16. Les composants structurels du VNO sont présents à la naissance et l'organe atteint la taille adulte , peu avant la puberté 17. Toutefois, si l'AOS de rongeur est déjà fonctionnelle chez les juvéniles est encore sujette à débat 18-20.

VSN se distinguent à la fois par leur localisation epitheliale et du type de récepteur qu'elles expriment. VSN présentent une morphologie bipolaire avec un axone non myélinisées et un seul dendrite apicale qui fait saillie vers la lumière et se termine par un bouton microvillositaire dendritique. VSN axons fasciculate pour former le nerf voméronasal qui laisse la capsule cartilagineuse à la fin dorso-caudale, monte le long du septum, passe la lame criblée et les projets vers le bulbe olfactif accessoire (AOB) 21,22. L'épithélium sensoriel voméronasal se compose de deux couches: la couche apicale est située plus près du côté luminal et les deux ports V1R- et tous sauf un type de FPR-rs-exprimant les neurones. Ces neurones coexpriment du G-protéine α-unité Gai2 et projet à la partie antérieure de l'AOB 23-25. Les neurones sensoriels situés dans les V2Rs express de la couche basale plus ou TFP-RS1 aux côtés G et ao envoient leurs axones dans la région postérieure de l'AOB 26-28.

Les neurones sont susceptibles voméronasal activés par plutôt petits (29-33 sémiochimiques V1Rs) ou les composés protéiniques (34-38 V2Rs) qui sont sécrétées dans divers fluides corporels tels que l' urine, la salive et le fluide se déchirent 37,39-41 </sup>. Dans les expériences in situ ont montré que VSN sont également activés par des peptides formylés et divers / inflammation liée à des composés antimicrobiens 25,42. En outre, hétérologue exprimé les protéines du FPR-rs partagent des spectres agonistes avec FPRS exprimés dans le système immunitaire, ce qui indique un rôle potentiel en tant que détecteurs pour la maladie dans leurs congénères ou sources alimentaires gâtés 25 (voir référence 43).

Fondamental pour la compréhension des relations de récepteur-ligand et des cascades de signalisation en aval des populations VSN spécifiques est une évaluation détaillée de leurs caractéristiques biophysiques de base dans un environnement natif. Dans le passé, l'analyse de la signalisation cellulaire a grandement bénéficié d'animaux génétiquement modifiés qui marquent une population définie de neurones par coexpression d' une protéine marqueur fluorescent 30,44-49. Dans ce protocole, une lignée de souris transgénique qui exprime FPR-RS3 conjointement avec un marqueur fluorescent (Fpr-RS3-i-Venus) est utilisé.Cette approche illustre comment utiliser une telle souche de souris génétiquement modifiées pour effectuer une analyse électrophysiologique d'une population de cellules optiquement identifiable à l'aide unique neurone patch-clamp enregistrements dans des tranches de tissu VNO coronales aiguës. Une pression axée sur l'air système de perfusion multi-corps pour des stimuli sensoriels et agents pharmacologiques permet la stimulation neuronale rapide, réversible et focale ou inhibition pendant les enregistrements. enregistrements de cellules entières dans des préparations de tranche permettent une analyse détaillée des propriétés intrinsèques, conductances de tension activé, ainsi que les modes de décharge potentiels d'action dans l'environnement natif de la cellule.

Protocol

Toutes les procédures animales étaient en conformité avec la législation locale et l'Union européenne sur la protection des animaux utilisés à des fins expérimentales (directive 86/609 / CEE) et des recommandations formulées par la Fédération des animaux de laboratoire Associations Européennes de Sciences (FELASA). Les deux souris C57BL / 6 et souris Fpr-RS3-i-Vénus ont été logés dans des groupes des deux sexes à la température ambiante sur un 12 h cycle lumière / obscurité avec de la nourriture …

Representative Results

Pour mieux comprendre les propriétés biophysiques et physiologiques des populations cellulaires définies, nous effectuons des coupes de tissu coronales aiguës de la souris VNO (Figure 1 – 2). Après dissection, les tranches peuvent être conservés dans oxygénée solution extracellulaire glacée (S 2) pour plusieurs heures. A la configuration de l' enregistrement, un échange constant avec une solution oxygénée frais (figure…

Discussion

Le VNO est une structure chemosensory qui détecte écomones. A ce jour, la plupart des récepteurs de voméronasal reste à deorphanized car seules quelques paires récepteur-ligand ont été identifiés. Parmi ceux -ci , V1rb2 a été décrit pour être spécifiquement activé par la phéromone urinaire 2-heptanone mâle 30, V2rp5 à être activé par le mâle phéromone spécifique ESP1 57 ainsi que V2r1b et V2rf2 à être activés par les peptides du CMH SYFPEITHI 48 et SEIDLILGY <su…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Ivan Rodriguez and Benoit von der Weid for generating the FPR-rs3-i-venus mouse line, their constructive criticism and fruitful discussions. This work was funded by grants of the Volkswagen Foundation (I/83533), the Deutsche Forschungsgemeinschaft (SP724/6-1) and by the Excellence Initiative of the German federal and state governments. MS is a Lichtenberg Professor of the Volkswagen Foundation.

Materials

Chemicals
Agarose (low-gelling temperature) PeqLab 35-2030
ATP (Mg-ATP) Sigma-Aldrich A9187
Bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) Sigma-Aldrich B9879
Calcium chloride Sigma-Aldrich C1016
Ethylene glycol tetraacetic acid (EGTA) Sigma-Aldrich E3889
Glucose Sigma-Aldrich G8270
GTP (Na-GTP) Sigma-Aldrich 51120
(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Sigma-Aldrich H3375
Magnesium chloride Sigma-Aldrich M8266
Potassium chloride Sigma-Aldrich P9333
Potassium hydroxide Sigma-Aldrich 03564
Sodium chloride Sigma-Aldrich S7653
Sodium hydrogen carbonate Sigma-Aldrich S5761
Sodium hydroxide Sigma-Aldrich S8045
Surgical tools and consumables
Large petri dish, 90 mm VWR decapitation, dissection of VNO capsule
Small petri dish, 35 mm VWR lid for VNO dissection, dish for embedding in agarose
Sharp large surgical scissor Fine Science Tools decapitation, removal of lower jaw
Strong bone scissors Fine Science Tools cutting incisors
Medium forceps, Dumont tweezers #2 Fine Science Tools removing skin and palate
Micro spring scissors, 8.5 cm, curved, 7 mm blades  Fine Science Tools cutting out VNO 
Two pairs of fine forceps, Dumont tweezers #5 Fine Science Tools dissecting VNO out of cartilaginous capsule
Small stainless steel spatula Fine Science Tools handling agarose block and tissue slices
Surgical scalpel cutting agarose block into pyramidal shape
Name Company Catalog Number Comments
Equipment
Amplifier HEKA Elektronik EPC-10
Borosilicate glass capillaries (1.50 mm OD/0.86 mm ID) Science Products
CCD-camera Leica Microsystems DFC360FX
Filter cube, excitation: BP 450-490, suppression: LP 515 Leica Microsystems I3
Fluorescence lamp Leica Microsystems EL6000
Hot plate magnetic stirrer Snijders 34532
Microforge  Narishige MF-830
Micromanipulator Device  Luigs & Neumann SM-5
Micropipette puller, vertical two-step Narishige PC-10 
Microscope Leica Microsystems CSM DM 6000 SP5
Noise eliminator 50/60 Hz (HumBug) Quest Scientific
Objective  Leica Microsystems HCX APO L20x/1.00 W
Oscilloscope Tektronik TDS 1001B
Osmometer  Gonotec Osmomat 030
Perfusion system 8-in-1 AutoMate Scientific
pH Meter five easy Mettler Toledo
Pipette storage jar World Precision Instruments e212
Recording chamber  Luigs & Neumann Slice mini chamber
Razor blades Wilkinson Sword GmbH Wilkinson Sword Classic
Oxygenating slice storage chamber; alternative commercial chambers are e.g. BSK1 Brain Slice Keeper (Digitimer) or the Pre-chamber (BSC-PC; Warner Instruments) custom-made
Stereo microscope Leica Microsystems S4E
Trigger interface  HEKA Elektronik TIB-14 S
Vibratome  Leica Microsystems VT 1000 S
Water bath  Memmert WNB 45

References

  1. Firestein, S. How the olfactory system makes sense of scents. Nature. 413 (6852), 211-218 (2001).
  2. Mombaerts, P. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5 (4), 263-278 (2004).
  3. Fuss, S. H., Omura, M., Mombaerts, P. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur. J. Neurosci. 22 (10), 2649-2654 (2005).
  4. Roppolo, D., Ribaud, V., Jungo, V. P., Lüscher, C., Rodriguez, I. Projection of the Grüneberg ganglion to the mouse olfactory bulb. Eur. J. Neurosci. 23 (11), 2887-2894 (2006).
  5. Adams, D. R. Fine structure of the vomeronasal and septal olfactory epithelia and of glandular structures. Microsc. Res. Tech. 23 (1), 86-97 (1992).
  6. Ma, M., et al. Olfactory signal transduction in the mouse septal organ. J. Neurosci. 23 (1), 317-324 (2003).
  7. Dulac, C., Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (7), 551-562 (2003).
  8. Luo, M., Katz, L. C. Encoding pheromonal signals in the mammalian vomeronasal system. Curr. Opin. Neurobiol. 14 (4), 428-434 (2004).
  9. Brennan, P. A., Kendrick, K. M. Mammalian social odours: attraction and individual recognition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 361 (1476), 2061-2078 (2006).
  10. Tirindelli, R., Dibattista, M., Pifferi, S., Menini, A. From Pheromones to Behavior. Physiol. Rev. 89, 921-956 (2009).
  11. Jacobson, L., Trotier, D., Doving, K. B. Anatomical description of a new organ in the nose of domesticated animals by Ludvig Jacobson (1813). Chem. Senses. 23 (6), 743-754 (1998).
  12. Keverne, E. B. The Vomeronasal Organ. Science. 286 (5440), 716-720 (1999).
  13. Breer, H., Fleischer, J., Strotmann, J. The sense of smell: multiple olfactory subsystems. Cell. Mol. Life Sci. C. 63 (13), 1465-1475 (2006).
  14. Liberles, S. D. Mammalian pheromones. Annu. Rev. Physiol. 76, 151-175 (2014).
  15. Meredith, M., O’Connell, R. J. Efferent control of stimulus access to the hamster vomeronasal organ. J. Physiol. 286, 301-316 (1979).
  16. Pankevich, D., Baum, M. J., Cherry, J. A. Removal of the superior cervical ganglia fails to block Fos induction in the accessory olfactory system of male mice after exposure to female odors. Neurosci. Lett. 345 (1), 13-16 (2003).
  17. Giacobini, P., Benedetto, A., Tirindelli, R., Fasolo, A. Proliferation and migration of receptor neurons in the vomeronasal organ of the adult mouse. Brain Res. Dev. Brain Res. 123 (1), 33-40 (2000).
  18. Coppola, D. M., O’Connell, R. J. Stimulus access to olfactory and vomeronasal receptors in utero. Neurosci. Lett. 106 (3), 241-248 (1989).
  19. Hovis, K. R., et al. Activity Regulates Functional Connectivity from the Vomeronasal Organ to the Accessory Olfactory Bulb. J. Neurosci. 32 (23), 7907-7916 (2012).
  20. Mucignat-Caretta, C. The rodent accessory olfactory system. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 196 (10), 767-777 (2010).
  21. Jia, C., Halpern, M. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα2 and G(αo)) and segregated projections to the accessory olfactory bulb. Brain Res. 719 (1-2), 117-128 (1996).
  22. Del Punta, K., Puche, C. A., Adams, N. C., Rodriguez, I., Mombaerts, P. A divergent pattern of sensory axonal projections is rendered convergent by second-order neurons in the accessory olfactory bulb. Neuron. 35 (6), 1057-1066 (2002).
  23. Belluscio, L., Koentges, G., Axel, R., Dulac, C. A map of pheromone receptor activation in the mammalian brain. Cell. 97 (2), 209-220 (1999).
  24. Rodriguez, I., Feinstein, P., Mombaerts, P. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell. 97 (2), 199-208 (1999).
  25. Rivière, S., Challet, L., Fluegge, D., Spehr, M., Rodriguez, I. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature. 459 (7246), 574-577 (2009).
  26. Martini, S., Silvotti, L., Shirazi, A., Ryba, N. J. P., Tirindelli, R. Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J. Neurosci. 21 (3), 843-848 (2001).
  27. Matsuoka, M., et al. Immunocytochemical study of Gi2alpha and Goalpha on the epithelium surface of the rat vomeronasal organ. Chem. Senses. 26 (2), 161-166 (2001).
  28. Dulac, C., Torello, A. T. Molecular detection of pheromone signals in mammals: from genes to behaviour. Nat. Rev. Neurosci. 4 (7), 551-562 (2003).
  29. Leinders-Zufall, T., et al. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature. 405 (6788), 792-796 (2000).
  30. Boschat, C., et al. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5 (12), 1261-1262 (2002).
  31. Novotny, M. V. Pheromones, binding proteins and receptor responses in rodents. Biochem. Soc. Trans. 31, 117-122 (2003).
  32. Nodari, F., et al. Sulfated steroids as natural ligands of mouse pheromone-sensing neurons. J. Neurosci. 28 (25), 6407-6418 (2008).
  33. Isogai, Y., et al. Molecular organization of vomeronasal chemoreception. Nature. 478 (7368), 241-245 (2011).
  34. Leinders-Zufall, T., et al. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science. 306 (5698), 1033-1037 (2004).
  35. Chamero, P., et al. Identification of protein pheromones that promote aggressive behaviour. Nature. 450 (7171), 899-902 (2007).
  36. Kimoto, H., Haga, S., Sato, K., Touhara, K. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature. 437 (7060), 898-901 (2005).
  37. Ferrero, D. M., et al. A juvenile mouse pheromone inhibits sexual behaviour through the vomeronasal system. Nature. 502 (7471), 368-371 (2013).
  38. Kaur, A. W., et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 157 (3), 676-688 (2014).
  39. Ben-Shaul, Y., Katz, L. C., Mooney, R., Dulac, C. In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. PNAS. 107 (11), 5172-5177 (2010).
  40. Kimoto, H., et al. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17 (21), 1879-1884 (2007).
  41. Spehr, M., et al. Parallel processing of social signals by the mammalian main and accessory olfactory systems. Cell. Mol. Life Sci. C. 63 (13), 1476-1484 (2006).
  42. Chamero, P., et al. G protein G{alpha}o is essential for vomeronasal function and aggressive behavior in mice. PNAS. , (2011).
  43. Bufe, B., Schumann, T., Zufall, F. Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J. Biol. Chem. 287 (40), 33644-33655 (2012).
  44. Bozza, T., Feinstein, P., Zheng, C., Mombaerts, P. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22 (8), 3033-3043 (2002).
  45. Grosmaitre, X., Vassalli, A., Mombaerts, P., Shepherd, G. M., Ma, M. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. PNAS. 103 (6), 1970-1975 (2006).
  46. Oka, Y., et al. Odorant receptor map in the mouse olfactory bulb: in vivo sensitivity and specificity of receptor-defined glomeruli. Neuron. 52 (5), 857-869 (2006).
  47. Ukhanov, K., Leinders-Zufall, T., Zufall, F. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J. Neurophysiol. 98 (4), 2357-2369 (2007).
  48. Leinders-Zufall, T., Ishii, T., Mombaerts, P., Zufall, F., Boehm, T. Structural requirements for the activation of vomeronasal sensory neurons by MHC peptides. Nat. Neurosci. 12 (12), 1551-1558 (2009).
  49. Pacifico, R., Dewan, A., Cawley, D., Guo, C., Bozza, T. An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep. 2 (1), 76-88 (2012).
  50. Veitinger, S., et al. Purinergic signalling mobilizes mitochondrial Ca2+ in mouse Sertoli cells. J. Physiol. 589 (Pt 21), 5033-5055 (2011).
  51. Kaur, A. W., et al. Murine pheromone proteins constitute a context-dependent combinatorial code governing multiple social behaviors. Cell. 157 (3), 676-688 (2014).
  52. Ackels, T., von der Weid, B., Rodriguez, I., Spehr, M. Physiological characterization of formyl peptide receptor expressing cells in the mouse vomeronasal organ. Front. Neuroanat. 8, 1-13 (2014).
  53. Liman, E. R., Corey, D. P. Electrophysiological characterization of chemosensory neurons from the mouse vomeronasal organ. J. Neurosci. 16 (15), 4625-4637 (1996).
  54. Cichy, A., et al. Extracellular pH Regulates Excitability of Vomeronasal Sensory Neurons. J. Neurosci. 35 (9), 4025-4039 (2015).
  55. Shimazaki, R., et al. Electrophysiological properties and modeling of murine vomeronasal sensory neurons in acute slice preparations. Chem. Senses. 31 (5), 425-435 (2006).
  56. Hagendorf, S., Fluegge, D., Engelhardt, C., Spehr, M. Homeostatic control of sensory output in basal vomeronasal neurons: activity-dependent expression of ether-à-go-go-related gene potassium channels. J. Neurosci. 29 (1), 206-221 (2009).
  57. Haga, S., et al. The male mouse pheromone ESP1 enhances female sexual receptive behaviour through a specific vomeronasal receptor. Nature. 466 (7302), 118-122 (2010).
  58. Leinders-Zufall, T., et al. A family of nonclassical class I MHC genes contributes to ultrasensitive chemodetection by mouse vomeronasal sensory neurons. J. Neurosci. 34 (15), 5121-5133 (2014).
  59. Jinek, M., et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337, 816-821 (2012).

Play Video

Cite This Article
Ackels, T., Drose, D. R., Spehr, M. In-depth Physiological Analysis of Defined Cell Populations in Acute Tissue Slices of the Mouse Vomeronasal Organ. J. Vis. Exp. (115), e54517, doi:10.3791/54517 (2016).

View Video