Summary

Determinazione del biofilm iniziazione su cellule infettate da virus da batteri e funghi

Published: July 06, 2016
doi:

Summary

A method is described herein for the determination of inter-Kingdom association and competition (bacterial and fungal) for adherence to virus-infected HeLa cell monolayers. This protocol can be extended to multiple combinations of prokaryotes, eukaryotes, and viruses.

Abstract

Lo studio delle interazioni polimicrobiche attraverso i regni tassonomici che includono funghi, batteri e virus non sono stati precedentemente esaminati rispetto a come i membri virali del microbiome influenzano le successive interazioni microbo con queste cellule ospiti infettate da virus. La convivenza virus con batteri e funghi è principalmente presente sulle superfici mucose della cavità orale e genitale. le cellule delle mucose, in particolare quelli con infezioni virali latenti croniche o persistenti persistenti, potrebbero avere un impatto significativo sulla membri della microbiome attraverso l'alterazione del virus in numero e tipo di recettori espressi. Modifiche nell'architettura membrana della cellula ospite comporterebbe capacità alterato di successivi componenti della flora normale e patogeni opportunisti di avviare il primo passo nella formazione di biofilm, cioè, l'aderenza. Questo studio descrive un metodo per la quantificazione e esame visivo effetto di HSV sulla apertura di Biofilformazione m (aderenza) di S. aureus e C. albicans.

Introduction

Il microbioma umano comprende diversi organismi da più regni tassonomici che condividono aree geografiche nel corpo. L'adesione alla superficie delle cellule è un primo passo essenziale nella formazione di biofilm, che è parte del processo microbiome colonizzazione. Incluso nel microbiome può essere virus che causano infezioni croniche e persistenti. L'infezione cronica a cellule da questi virus può causare un'alterazione putativo disponibilità del recettore. 1,2 Inoltre, l'ingresso delle cellule da patogeni intracellulari potrebbe anche influenzare la fluidità di membrana host / idrofobia che a loro volta possono alterare l'attaccamento degli altri membri microbiome, compresi batteri e funghi . Al fine di comprendere le interazioni che possono verificarsi tra questi molteplici agenti patogeni che co-localizzano nelle stesse regioni geografiche del ospite umano, dobbiamo essere in grado di studiare l'interazione di agenti patogeni che rappresentano lo spettro di regni tassonomici presenti sulla superficie della mucosa.

t "> Il Herpesviridae sono una famiglia di microbi presenti nel 100% degli esseri umani come membri permanenti del microbiome 3,4. Inoltre, esse possono anche essere persistentemente versato sia in presenza che in assenza di sintomi. In particolare, herpes simplex virus-1 e herpes simplex virus 2 (HSV-1 e HSV-2, rispettivamente) sono membri permanenti del microbiome nella oronasopharynx e del tratto genitale. in individui immuno-competenti, sia HSV-1 e HSV-2 causa gengivostomatite, nonché herpes genitale 5-8. in questi siti, HSV provoca un'infezione latente caratterizzata da persistente asintomatica virale spargimento 9. ingresso di HSV in cellule provoca alterazioni nell'espressione superficiale di nectins, eparan solfato, raft lipidici e herpesvirus ingresso mediatore necrosi cronica / tumorale recettore del fattore (HVEM / TNFR) 10-25. Questi recettori potenzialmente rappresentano condivise per alcuni batteri e funghi, per esempio S. aureus e C. albicans, che pur patogeni opportunisti,può anche risiedere come membri del microbioma mucosa del oronasopharynx 26,27. All'interno del oronasopharynx S. aureus e C. albicans occupano due siti distinti di colonizzazione. In host con denti naturali, la mucosa orale è condiviso da HSV-1 e C. albicans, mentre le narici nasali anteriori sono occupati da S. aureus 28. Tuttavia, nonostante i risultati in vitro in cui S. aureus aderisce alle cellule epiteliali della bocca, 29,30 S. aureus è raramente isolata da campioni orali quando il tessuto normale è presente 29,30. Poco si sa riguardo a genitali nicchie tratto co-colonizzazione al di là dei risultati clinici che S. aureus è associata a vaginite aerobica, caratterizzata da infiammazione genitale, scarico e dispareunia, mentre C. albicans produce lesioni della mucosa simile a quello osservato nella cavità orale 31-35. Così, anche se questi membri della Microbi orale e genitaleome croce regni tassonomici poco si sa sulla loro interazione come urta la loro capacità di avviare la formazione di biofilm attraverso l'adesione alla superficie della cellula ospite 5. Questo protocollo è stato efficacemente applicato a determinare le conseguenze funzionali di co-colonizzazione / infezione.

Protocol

1. HSV ceppi e Manipolazione Nota: ricombinante non diffondere HSV-1 (KOS) gL86 e HSV-2 (KOS) 333gJ – con l'attività reporter di beta-galattosidasi utilizzati sono stati forniti da V. Twiari 36,37. Utilizzare virus da un singolo lotto e conservare a -80 ° C in un rapporto 1: 1 di mezzo di Dulbecco modificato Eagle (DMEM) con siero fetale bovino 20% (FBS) e latte scremato fino al momento dell'uso. Prima stoccaggio lot virale, determinare la concentrazione di virus o<…

Representative Results

Il livello di solidità dei dati ottenibili da sistema descritto in questa relazione è illustrata nella Figura 2 af 38. Attraverso l'utilizzo di questo sistema di modulazione di interazione stafilococco e funghi con le cellule infettate da virus e il loro effetto sulla reciproca aderenza può essere delineata. Questi tipi di studi richiedono esame microscopico dell'interazione come mostrato nelle figure 3 e 4, 38…

Discussion

Al momento non sono disponibili informazioni sulle interazioni complesse tra permanente ai membri semi-permanenti del microbiome host che attraversano più domini tassonomici, vale a dire, procarioti, eucarioti e virali. Perciò abbiamo sviluppato un nuovo sistema modello in vitro per lo studio del biofilm iniziazione da S. aureus e C. albicans on HSV-1 oppure HSV-2 infettato 229 cellule HeLa 38 (HeLa). Il sistema modello cellule HeLa presenta un vantaggio…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This project was supported by Midwestern University, IL Office of Research and Sponsored Programs (ORSP) and Midwestern University College of Dental Medicine-Illinois (CDMI).

Materials

C.albicans
BBL Sabouraud Dextrose BD 211584
Fungisel Agar Dot Scientific 7205A
S.aureus
Mannitol Salt Agar Troy Biologicals 7143B
Sheep blood agar Troy Biologicals 221239
Hela cells
1xDMEM (Dubelcco's Modified Eagle Medium, with 4.5 g/L glucose and L-glutamine, without sodium pyruvate Corning 10-017-CM
Gentamicin 50mg/ml Sigma 1397 50µg/ml final concentration in the complete DMEM
Trypsin EDTA (0.05% Trypsin, 0.53M EDTA)Solution 1X Corning 25-052-CI
Fetal Bovine Serum Atlanta Biologicals S11150 10% final concentration in the complete DMEM
Other medium and reagents
ONPG Thermo Scientific 34055
Ultra-Pure X gal Invitrogen 15520-018
1x HBSS (Hanks' Balanced Salt Solution) Corning 20-021-CV
1XPBS Dot Scientific 30042-500
RIPA Lysis Life Technologies 89901
Staining
Methanol Fisher Scientific A433P-4
HSV 1&2, specific for gD ViroStat 196
DAPI SIGMA D8417-5MG
Gram Crystal Violet Troy Biologicals 212527
Supplies
Petri dish 100X15 Dot Scientific 229693 
Petri dish 150X15 Kord Valmark 2902
96-Well plates Evergreen Scientific 222-8030-01F
24-well plates Evergreen Scientific 222-8044-01F
Culture tubes 100×13 Thomas Scientific 9187L61
Cover slip circles, 12mm Deckglaser CB00120RA1

References

  1. Palu, G., et al. Effects of herpes-simplex virus type-1 infection on the plasma-membrane and related functions of HeLa S3 cells. J Gen Virol. 75, 3337-3344 (1994).
  2. Vitiello, G., et al. Lipid composition modulates the interaction of peptides deriving from herpes simplex virus type I glycoproteins B and H with biomembranes. Biochim. Biophys. Acta-Biomembr. 1808, 2517-2526 (2011).
  3. Bradley, H., Markowitz, L. E., Gibson, T., McQuillan, G. M. Seroprevalence of Herpes Simplex Virus Types 1 and 2-United States, 1999-2010. J. Infect. Dis. 209, 325-333 (2014).
  4. Szpara, M. L., et al. Evolution and diversity in Human Herpes Simplex Virus genomes. J Virol. 88, 1209-1227 (2014).
  5. Arduino, P. G., Porter, S. R. Herpes Simplex Virus Type I infection: overview on relevant clinico-pathological features. J Oral Pathol Med. 37, 107-121 (2008).
  6. Looker, K. J., Garnett, G. P. A systematic review of the epidemiology and interaction of herpes simplex virus types 1 and 2. Sex. Transm. Infect. 81, 103-107 (2005).
  7. Taylor, T. J., Brockman, M. A., McNamee, E. E., Knipe, D. M. Herpes simplex virus. Front Biosci. 7, 752-764 (2002).
  8. Bernstein, D. I., et al. Epidemiology, clinical presentation, and antibody response to primary infection with Herpes Simplex Virus Type 1 and Type 2 in young women. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 56, 344-351 (2013).
  9. Sacks, S. L., et al. HSV shedding. Antiviral Res. 63, 19-26 (2004).
  10. Brandhorst, T. T., et al. Structure and Function of a Fungal Adhesin that Binds Heparin and Mimics Thrombospondin-1 by Blocking T Cell Activation and Effector Function. PLoS Pathog. 9, (2013).
  11. Green, J. V., et al. Heparin-Binding Motifs and Biofilm Formation by Candida albicans. Journal of Infectious Diseases. 208, 1695-1704 (2013).
  12. Khalil, M. A., Sonbol, F. I. Investigation of biofilm formation on contact eye lenses caused by methicillin resistant Staphylococcus aureus. Niger. J. Clin. Pract. 17, 776-784 (2014).
  13. Shanks, R. M. Q., et al. Heparin stimulates Staphylococcus aureus biofilm formation. Infection and Immunity. 73, 4596-4606 (2005).
  14. Tiwari, V., et al. Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol. 80, 8970-8980 (2006).
  15. Delboy, M. G., Patterson, J. L., Hollander, A. M., Nicola, A. V. Nectin-2-mediated entry of a syncytial strain of herpes simplex virus via pH-independent fusion with the plasma membrane of Chinese hamster ovary cells. Virol J. 3, (2006).
  16. Di Giovine, P., et al. Structure of Herpes Simplex Virus Glycoprotein D Bound to the Human Receptor Nectin-1. PLoS Pathog. 7, (2011).
  17. Hauck, C. R. Cell adhesion receptors – signaling capacity and exploitation by bacterial pathogens. Medical Microbiology and Immunology. 191, 55-62 (2002).
  18. Kramko, N., et al. Early Staphylococcus aureus-induced changes in endothelial barrier function are strain-specific and unrelated to bacterial translocation. Int. J. Med. Microbiol. 303, 635-644 (2013).
  19. Roy, S., Nasser, S., Yee, M., Graves, D. T., Roy, S. A long-term siRNA strategy regulates fibronectin overexpression and improves vascular lesions in retinas of diabetic rats. Molecular vision. 17, 3166-3174 (2011).
  20. Sato, R., et al. Impaired cell adhesion, apoptosis, and signaling in WASP gene-disrupted Nalm-6 pre-B cells and recovery of cell adhesion using a transducible form of WASp. Int. J. Hematol. 95, 299-310 (2012).
  21. Shukla, S. Y., Singh, Y. K., Shukla, D. Role of Nectin-1, HVEM, and PILR-alpha in HSV-2 entry into human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci. 50, 2878-2887 (2009).
  22. Stump, J. D., Sticht, H. Mutations in herpes simplex virus gD protein affect receptor binding by different molecular mechanisms. J Molecu Model. 20, (2014).
  23. Zelano, J., Wallquist, W., Hailer, N. P., Cullheim, S. Expression of nectin-1, nectin-3, N-cadherin, and NCAM in spinal motoneurons after sciatic nerve transection. Experimental Neurology. 201, 461-469 (2006).
  24. Akhtar, J., et al. HVEM and nectin-1 are the major mediators of herpes simplex virus 1 (HSV-1) entry into human conjunctival epithelium. Investigative Ophthalmology & Visual Science. 49, 4026-4035 (2008).
  25. Heo, S. K., et al. LIGHT enhances the bactericidal activity of human monocytes and neutrophils via HVEM. J. Leukoc. Biol. 79, 330-338 (2006).
  26. . National Nosocomial Infections Surveillance (NNIS) System Report. Am J Infect Control. 32, 470-485 (2004).
  27. Wisplinghoff, H., et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 39, 1093-1093 (2004).
  28. Colacite, J., et al. Pathogenic potential of Staphylococcus aureus strains isolated from various origins. Ann. Microbiol. 61, 639-647 (2011).
  29. Colombo, A. V., et al. Quantitative detection of Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa in human oral epithelial cells from subjects with periodontitis and periodontal health. J. Med. Microbiol. 62, 1592-1600 (2013).
  30. Merghni, A., Ben Nejma, M., Hentati, H., Mahjoub, A., Mastouri, M. Adhesive properties and extracellular enzymatic activity of Staphylococcus aureus strains isolated from oral cavity. Microb Pathogen. 73, 7-12 (2014).
  31. Donders, G. G. G., et al. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. Bjog. 109, 34-43 (2002).
  32. Li, J. R., McCormick, J., Bocking, A., Reid, G. Importance of vaginal microbes in reproductive health. Repro Sci. 19, 235-242 (2012).
  33. Jarvis, W. R. The epidemiology of colonization. Infect Cont Hosp Epidemiol. 17, 47-52 (1996).
  34. Okonofua, F. E., Akonai, K. A., Dighitoghi, M. D. Lower genital-tract infections in infertile nigerian women compared with controls. Genitourin Med. 71, 163-168 (1995).
  35. Nenoff, P., et al. Mycology – an update Part 2: Dermatomycoses: Clinical picture and diagnostics. J Der Deutschen Dermatol Gesellschaft. 12, 749-779 (2014).
  36. Hubbard, S., et al. Contortrostatin, a homodimeric disintegrin isolated from snake venom inhibits herpes simplex virus entry and cell fusion. Antivir. Ther. 17, 1319-1326 (2012).
  37. Shukla, S. Y., Singh, Y. K., Shukla, D. Role of Nectin-1, HVEM, and PILR-α in HSV-2 entry into human retinal pigment epithelial cells. Investigative Ophthalmology & Visual Science. 50, 2878-2887 (2009).
  38. Plotkin, B. J., Sigar, I. M., Tiwari, V., Halkyard, S. Herpes simplex virus (HSV) modulation of Staphylococcus aureus. and Candida albicans.initiation of HeLa 299 cell-associated biofilm. Curr Microbiol. , (2016).
  39. Alva-Murillo, N., Lopez-Meza, J. E., Ochoa-Zarzosa, A. Nonprofessional phagocytic cell receptors involved in Staphylococcus aureus internalization. Biomed Res Internat. , (2014).
  40. Calderone, R. A., Scheld, W. M. Role of fibronectin in the pathogenesis of candidal infections. Reviews of infectious diseases. 9, 400-403 (1987).
  41. Fowler, T., et al. Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibronectin-binding MSCRAMMs and host cell beta1 integrins. European journal of cell biology. 79, 672-679 (2000).
  42. Mao, L., Franke, J. Symbiosis, dysbiosis, and rebiosis-The value of metaproteomics in human microbiome monitoring. Proteomics. 15, 1142-1151 (2015).
  43. Christopher, R. A., Kowalczyk, A. P., McKeown-Longo, P. J. Localization of fibronectin matrix assembly sites on fibroblasts and endothelial cells. J Cell Sci. 110, 569-581 (1997).
  44. Heino, J., Kapyla, J. Cellular receptors of extracellular matrix molecules. Current Pharm Des. 15, 1309-1317 (2009).
  45. Hynes, R. O., et al. A large glycoprotein lost from the surfaces of transformed cells. Annals of the New York Academy of Sciences. 312, 317-342 (1978).
  46. Mao, Y., Schwarzbauer, J. E. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix biology : journal of the International Society for Matrix Biology. 24, 389-399 (2005).
  47. Schwarzbauer, J. E., DeSimone, D. W. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harbor perspectives in biology. 3, (2011).
  48. Abdelmegeed, E., Shaaban, M. I. Cydooxygenase inhibitors reduce biofilm formation and yeast-hypha conversion of fluconazole resistant Candida albicans. J. Microbiol. 51, 598-604 (2013).
  49. Gow, N. A. Germ tube growth of Candida albicans. Current topics in medical mycology. 8, 43-55 (1997).
  50. Liu, Y. P., Filler, S. G. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot. Cell. 10, 168-173 (2011).
  51. Lu, Y., Su, C., Liu, H. Candida albicans hyphal initiation and elongation. Trends Microbiol. 22, 707-714 (2014).
  52. Kabir, M. A., Hussain, M. A., Ahmad, Z. Candida albicans: A model organism for studying fungal pathogens. ISRN microbiology. 2012, 538694 (2012).
  53. Ovchinnikova, E. S., Krom, B. P., Busscher, H. J., van der Mei, H. C. Evaluation of adhesion forces of Staphylococcus aureus along the length of Candida albicans hyphae. BMC Microbiol. 12, (2012).
  54. Peters, B. M., et al. Staphylococcus aureus adherence to Candida albicans hyphae is mediated by the hyphal adhesin Als3p. Microbiology-Sgm. 158, 2975-2986 (2012).

Play Video

Cite This Article
Plotkin, B. J., Sigar, I. M., Tiwari, V., Halkyard, S. Determination of Biofilm Initiation on Virus-infected Cells by Bacteria and Fungi. J. Vis. Exp. (113), e54162, doi:10.3791/54162 (2016).

View Video