トランスジェニック操作およびゲノムの編集は、機能的遺伝子とシス -regulatory要素の役割をテストするために重要です。ここでは、ゲノム(Tol2の媒介蛍光レポーター導入遺伝子構築物を含む、TALENs、およびCRISPRs)の変更を生成するための詳細なマイクロインジェクションプロトコルが緊急モデルの魚のために提示され、イトヨ。
イトヨの魚は、形態的、生理的、および行動の表現型の多様な遺伝的基礎を研究するための強力なシステムとして登場しました。海洋集団は、海洋と淡水のフォームを横断遺伝学は進化の特性を制御するゲノム領域をマッピングするために使用することができる希少な脊椎動物のシステムを提供する能力と組み合わせて無数の淡水環境に適応するように進化してき著しく多様な表現型。優秀なゲノムリソースが進化し変化の分子遺伝学的解剖を容易に利用できるようになりました。マッピング実験は興味深い候補遺伝子のリストを生成しながら、機能的な遺伝子操作は、これらの遺伝子の役割を試験するために必要とされます。遺伝子調節はTol2のトランスポザーゼシステムを用いて、ゲノムに組み込まれたトランスジェニックレポータープラスミドおよびBACを用いて研究することができます。特定の候補遺伝子およびシス -regulatory要素の機能は、標的誘導することによって評価することができますTALENおよびCRISPR / Cas9ゲノム編集試薬と突然変異。すべての方法は、受精1細胞トゲウオ胚に核酸を導入する必要が、タスクはトゲウオ胚と比較的小さく、薄い割球の厚い絨毛膜によって挑戦しました。ここでは、トゲウオ胚への核酸のマイクロインジェクションのための詳細なプロトコルは、トランスジェニックゲノム編集の遺伝子発現と機能を研究するためのアプリケーション、ならびに形質転換の成功を評価し、安定した株を回収する技術について記載されています。
生物多様性が生じたどのように理解する1つの基本的な構成要素は、自然の中で進化した表現型変化の遺伝と発達拠点を決定することです。イトヨの魚、Gasterosteusアクレータスは 、進化の遺伝的基礎を研究するための優れたモデルとして登場しました。トゲウオは、海水魚は北半球の周りに無数の淡水環境を植民地化してきたように劇的な形態的、生理的で、その結果、多くの適応進化的変化を遂げ、としている行動の変化1。 20個の-1つのトゲウオ集団からの個人のゲノムを配列決定し、組み立て、及び高密度連鎖地図は、さらに、アセンブリ2,3を改善するために生成されているされています。遺伝的マッピング実験は、進化した表現型を4基礎となるゲノム領域を同定した– 6を 、そしていくつかのケースでは、特定の候補遺伝子の機能的役割は、7,8をテストされています。形態学的変化の根底にあるゲノム領域の数は、有望な候補遺伝子と同定されているが、これらの候補者はまだ機能的に9試験されていない– 12。また、トゲウオは集団遺伝学/ゲノミクス13,14、分化15、動作1、内分泌学16、生態毒性17、免疫学18および寄生虫19の研究のための一般的なモデルです。これらの各フィールドにおける今後の研究では、トゲウオで機能的な遺伝子操作を実行する能力の恩恵を受ける。そのコード配列を操作することに加えて、候補遺伝子の役割は、それらのシス -regulatory配列を研究することによって、および機能的に、増加減少、または候補遺伝子の発現を排除することによって評価することができます。トゲウオにおけるマイクロインジェクションおよび遺伝子導入方法がよく7,8,20を確立されており、最初に使用して開発されたメガヌクレアーゼ媒介方法21は、第1メダカ22に記載します。ここで紹介する修正されたマイクロインジェクション法はTol2の媒介遺伝子導入およびTALENsとCRISPRs含む最近開発されたゲノム編集試薬の両方に最適化されています。
シス -regulatory変化が変異23を符号化の負の多面的な結果を回避することができるようにシス -regulatory要素への変更は、形態学的進化に重要であると考えられています。そのため、テストと推定されるシス -regulatory配列を比較することは、進化の研究の増加の中心的な目標となっています。加えて、ほとんどのヒト疾患のバリアントは、調節変異体24,25であり、モデル脊椎動物系が痛ん-regulatory要素の機能及びロジックシス研究するために必要とされます。大量に外部に彼らの胚を受精魚はシス -regulationを研究するための強力な脊椎動物システムを提供しています。 Tol2のトランスポゾンシステム、内forei28 –ゲノムに組み込まれるべきGN DNAはTol2のトランスポザーゼ結合部位とTol2のトランスポザーゼmRNAと同時注入により隣接され、成功した魚のゲノム26にプラスミド構築物を統合するための高効率で動作します。典型的には、潜在的なエンハンサーはTol2の骨格中に(例えば、29 hsp70lなど)基本プロモーターならびにEGFP(強化緑色蛍光タンパク質)またはmCherryを、蛍光レポーター遺伝子の上流にクローニングし、トランスポザーゼmRNAの26に注入されます。蛍光レポーターの、いずれかの注入した胚または安定に組み込まれた導入遺伝子を持つ子孫における発現の観察は、推定されるエンハンサーにより駆動される遺伝子発現の時空間制御に関する情報を提供します。さらなる実験では、検証エンハンサーは、目的の遺伝子の組織特異的過剰発現を駆動するために使用することができます。
より大きなシス -regulatory地域、高品質の大インサートGENOMの分析のために細菌人工染色体(BACの)を使用してICのライブラリは、両方の海洋および淡水トゲウオ30のために構築されてきました。これらのBACは、大規模(150〜200キロバイト)のゲノム領域31の文脈における蛍光レポーター遺伝子と遺伝子を交換するrecombineeredすることができます。 BAC内の調節配列によって決定される蛍光レポーターは、次いで、時空間パターンで発現されます。魚類での研究のために、Tol2の部位は、ゲノム組込み32,33を容易にするためにBACに添加することができます。 in situハイブリダイゼーション技術的に困難である場合トゲウオの骨形成タンパク質6(BMP6)20のために示されているように、開発の後期段階では、BACの蛍光読み出しは、遺伝子発現のパターンを研究するために使用することができます。また、個々の蛍光の発現パターンは、in situハイブリダイゼーションを用いて達成することができない、時間をかけて追跡することができます。 BACがまたadditionaを追加するために使用することができますゲノム領域のL個のコピーは、目的の遺伝子の投与量を増加させます。
遺伝子機能の研究のために、ゲノム編集生物34の多種多様なゲノム配列を標的とする変化を生成するために使用することができる爆発拡張フィールドです。転写活性化因子のようなエフェクターヌクレアーゼ(TALENs)もともと正確な選択のゲノム配列に直接結合し、二本鎖切断35,36を生成するように操作することができる植物病原体から単離されたモジュラー、配列特異的ヌクレアーゼです。クラスタ化された定期的interspaced短いパリンドローム反復(CRISPR)/ CASシステムは、もともと細菌で発見され、ガイド37と相補的な標的DNA配列の中断を生成するために、ガイドRNAとCas9タンパク質を使用しました。標的配列の機能を破壊することができ、多くの場合、小さな挿入または欠失を残すTALENsとCRISPRsの両方で作成された二本鎖切断のその後の修理、35-37。トゲウオにおいて、TALENsエンハンサー20を標的とすることによって、遺伝子発現を破壊するために使用されており、TALENsとCRISPRs両方が正常配列(未発表データ)を符号化における変異を作製しています。ゼブラフィッシュにおける使用のためのCRISPRsの生成のための詳細なプロトコールは、トゲウオ38 CRISPRsを開発するためのガイドラインとして使用することができます。
トランスジェニックゲノム編集の実験は、新たに受精した単細胞胚への核酸の導入を必要とします。開発の初期段階における導入遺伝子またはゲノム編集ツールを導入することにより、胚における遺伝子操作された娘細胞の数が最大化されます。注入した胚を視覚的蛍光についてスクリーニングまたは分子ゲノム修飾についてスクリーニングされます。生殖系列に寄与する細胞が正常に標的化される場合、導入遺伝子または変異は、ポスト噴射致死性が高い場合であっても、子孫のサブセットへ渡すことができます。モザイク魚は外部交配することができますかインタークロスとその子孫は、突然変異対立遺伝子または関心の安定に組み込まれた導入遺伝子を回復するためにスクリーニングしました。このプロトコルは、1セルトゲウオ胚に導入遺伝子およびゲノム編集の試薬を導入し、成功したゲノム修飾をモニタリングするための方法を説明します。
遺伝子導入またはゲノム編集のための注入1細胞トゲウオ胚は、3つの主要な課題を提示します。まず、ゼブラフィッシュの胚に比べて、トゲウオ胚絨毛膜はタフであり、しばしば針を中断します。この問題を部分的に厚くて強いガラスマイクロピペットを使用して漿膜に垂直注入することによって克服することができる(プロトコール、 図2を参照)。できるだけ少量の水が(絨?…
The authors have nothing to disclose.
この作品は、NIH R01#DE021475(CTM)、NIH博士号を取得する前のトレーニンググラント5T32GM007127(PAE)、およびNSF大学院研究フェローシップ(NAE)によって部分的に資金を供給されました。私たちは、注入プロトコル上で役に立つフィードバックのためにCRISPRサンガー配列決定データを生成するためのBACのリコンビや注射、ニックDondeを実行するためのケビン・シュヴァルバッハ、とキャサリンリーパリに感謝します。
Stereomicroscope with transillumination | Leica | S6e/ KL300 LED | |
Manual micromanipulator | Applied Scientific Instrumentation | MM33 | Marzhauser M33 Micromanipulator |
Pressure Injecion system | Applied Scientific Instrumentation | MPPI-3 | |
Back pressure unit | Applied Scientific Instrumentation | BPU | |
Micropipette holder kit | Applied Scientific Instrumentation | MPIP | |
Magnetic base holder | Applied Scientific Instrumentation | Magnetic base | |
Foot switch | Applied Scientific Instrumentation | FSW | |
Iron plate (magnetic base) | Narishige | IP | |
Flaming/Brown Micropipette Puller | Sutter Instrument | P-97 | |
Disposable transfer pipettes | Fisher | 13-711-7M | |
0.5% phenol red in DPBS | Sigma | P0290 | injection tracer |
#5 forceps, biologie dumoxel | Fine Science Tools | 11252-30 | for needle breaking |
Micropipette Storage Jar | World Precision Instruments | E210 | holds needles |
6", 6 teeth per inch plaster drywall saw | Lenox | 20571 (S636RP) | hold eggs for injection |
13 cm x 13 cm glass plate | any hardware store | – | |
Borosilicate glass capillaries, 1.0 mm OD/0.58 mm ID | World Precision Instruments | 1B100-F4 | *harder glass than zebrafish injection capillaries |
150 x 15mm petri dish | Fisher | FB0875714 | raise stickleback embryos |
35 x 10mm petri dish | Fisher | 08-757-100A | store eggs pre-injection |
Instant Ocean Salt | Instant Ocean | SS15-10 | |
Sodium Bicarbonate | Sigma | S5761-500G | |
Tricaine methanesulfonate/MS-222 | Western Chemical Inc | MS222 | fish anaesthesia/euthanasia |
Sp6 transcription kit | Ambion | AM1340 | For transcription of TALENs and transposase mRNA |
RNeasy cleanup kit | Qiagen | 74104 | purify transposase or TALEN RNA |
QiaQuick PCR cleanup kit | Qiagen | 28104 | clean up plasmids for injection |
Proteinase K 20 mg/ml | Ambion | AM2546 | for DNA preparation |
Nucleobond BAC 100 kit | Clontech | 740579 | for BAC DNA preparation |
NotI | NEB | R0189L | |
Phusion polymerase | Fisher | F-530L | |
Qiagen PlasmidPlus Midi kit | Qiagen | 12943 | contains endotoxin rinse buffer |
QIAQuick Gel Extraction | Qiagen | 28704 | for sequencing induced mutations |
Phenol:chloroform:Isoamyl alcohol | Sigma | P2069-100ML | |
Sodium acetate | Sigma | S2889-250G | |
Ethanol (molecular biology grade) | Sigma | E7023-500ML | |
Agarose | Sigma | A9539 | |
50X Tris-acetate-EDTA buffer | ThermoFisher | B49 | |
0.5-10KbRNA ladder | ThermoFisher | 15623-200 | |
Nanodrop Spectrophotometer | Thermo Scientific | Nanodrop 2000 | |
Paraformaldehyde | Sigma | 158127-500G | |
10X PBS | ThermoFisher | 70011-044 | |
1kb Plus DNA Ladder | ThermoFisher | 10787-018 | |
Potassium Chloride | Sigma | P9541-500G | |
Magnesium Chloride | Sigma | M8266-100G | |
NP-40 | ThermoFisher | 28324 | |
Tween 20 | Sigma | P1379-500ML | |
Tris pH 8.3 | Teknova | T1083 | |
12-strip PCR tube | Thermo Scientific | AB-1113 |