A protocol for the electrochemical testing of an aprotic Li-O2 battery with the preparation of electrodes and electrolytes and an introduction of the frequently used methods of characterization is presented here.
We demonstrate a method for electrochemical testing of an aprotic Li-O2 battery. An aprotic Li-O2 battery is made of a Li-metal anode, an aprotic electrolyte, and an O2-breathing cathode. The aprotic electrolyte is a solution of lithium salt with aprotic solvent; and porous carbon is commonly used as the cathode substrate. To improve the performance, an electrocatalyst is deposited onto the porous carbon substrate by certain deposition methods, such as atomic layer deposition (ALD) and wet-chemistry reaction. The as-prepared cathode materials are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray absorption near edge structure (XANES). A Swagelok-type cell, sealed in a glass chamber filled with pure O2, is used for the electrochemical test on a battery test system. The cells are tested under either capacity-controlled mode or voltage controlled mode. The reaction products are investigated by electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and Raman spectroscopy to study the possible pathway of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). This protocol demonstrates a systematic and efficient arrangement of routine tests of the aprotic Li-O2 battery, including the electrochemical test and characterization of battery materials.
1996年,亚伯拉罕和江1报告的第一个可逆的非水性锂O 2的电池由多孔碳阴极,有机电解质和锂金属阳极。自那时以来,由于其极高的理论能量密度超过任何其他现有的能量存储系统中,锂O 2电池,其诱导在阳极上的电流流动通过锂的氧化和氧的在阴极的还原(整体反应力+ + O 2 + E – ↔李2 O 2),最近收到显著的兴趣1-8。
下列要求的负极材料,将能够满足的李-O高性能需求2电池:(1)快速氧气扩散; (2)良好的电气和离子导电性; (3)高比表面积和(4)的稳定性。两个阴极的表面积和孔隙率的临界。李-O 2电池电化学性能9-12的多孔结构允许从锂阳离子与O 2反应产生的固体排放产品的沉积;和更大的表面积提供更多的活性位点,以适应电粒子加速电化学反应。例如电催化剂是由特定的沉积方法,其提供到基底和催化剂颗粒的良好控制附着力强,与基板的原始多孔表面结构的保存加到阴极材料13-17所制备的材料进行测试在世伟洛克型细胞作为非质子锂O 2电池的阴极。然而,电池的性能不仅取决于阴极材料的性质,而且还对非质子电解质18-22和锂金属阳极的类型。23-26更多影响包括的量和材料的浓度和p在充电/放电测试中使用rocedure。适当的条件和协议将优化和改进电池材料的整体性能。
除了 电化学测试的结果,电池的性能还可以通过表征原始材料和反应产物进行评价。27-33扫描电子显微镜(SEM)被用来研究在阴极材料和形态的表面微观结构放电产物的演变。透射电子显微镜(TEM),X射线近边结构(XANES)吸收,和X射线光电子能谱(XPS)可以被用来确定超微结构,化学状态,和元件的组成部分,特别是对于那些催化剂纳米颗粒。高能量X射线衍射(XRD)用于直接识别该结晶放电产物。可能的电解质的分解可以通过衰减全反射傅立叶变换确定红外(ATR-FTIR)和拉曼光谱。
本文是演示的非质子锂O 2电池的常规试验,包括准备电池材料及配件,电化学性能测试和表征质朴的材料和反应产物的系统和有效的安排的协议。详细的视频协议是为了帮助在该领域从业者的新避免与李-O 2电池的性能测试和表征相关的许多常见的陷阱。
考虑锂的 O 2的电池系统的空气的敏感性,特别是CO 2和水分,大量的在协议的步骤,以减少干扰物和避免副反应是必要的。例如,洛克式电池在充满氩气与O 2的<0.5ppm的和H 2 O <0.5ppm的手套箱组装;和所有的阴极材料,电解质溶剂和盐,玻璃纤维,洛克的部件,在玻璃室组装前干燥以减少水分污染。阳极端是一个不锈钢棒,以避免锂金属和O 2之间?…
The authors have nothing to disclose.
Research at Argonne National Laboratory was funded by U.S. Department of Energy, FreedomCAR and Vehicle Technologies Office. Use of the Advanced Photon Source and research carried out in the Electron Microscopy Center at Argonne National Laboratory was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
1-Methyl-2-pyrrolidinone (NMP), 99.5% | Sigma-Aldrich | 328634 | |
Battery test system | MACCOR | Series 4000 Automated Test System | |
Dimethyl carbonate (DMC), ≥99% | Sigma-Aldrich | 517127 | |
Ethyl alcohol, ≥99.5% | Sigma-Aldrich | 459844 | |
Formaldehyde solution, 37 wt. % in H2O | Sigma-Aldrich | 252549 | |
Graphitized Carbon black, >99.95% | Sigma-Aldrich | 699632 | |
Iron(III) chloride (FeCl3), 97% | Sigma-Aldrich | 157740 | |
Kapton polyimide tubing | Cole-Parmer | EW-95820-09 | |
Kapton polymide tape | Cole-Parmer | EW-08277-80 | |
Kapton window film | SPEX Sample Prep | 3511 | |
Lithium Chip (99.9% Lithium) | MTI Corporation | EQ-Lib-LiC25 | |
Lithium trifluoromethanesulfonate (LiCF3SO3) | Sigma-Aldrich | 481548 | |
Palladium hexafluoroacetylacetonate (Pd(hfac)2), 99.9% | Aldrich | 401471 | |
Poly(vinylidene fluoride) (PVDF) | Aldrich | 182702 | |
Potassium permanganate (KMnO4), ≥99.0% | Sigma-Aldrich | 223468 | |
Sodium hydroxide (NaOH), ≥97.0% | Sigma-Aldrich | 221465 | |
Tetraethylene glycol dimethyl ether (TEGDME), ≥99% | Aldrich | 172405 | |
Toray 030 carbon paper | ElectroChem Inc. | 590637 |