Summary

HIV誘導神経炎症のマウスモデルでは二光子顕微鏡を用いた脳血管のアーキテクチャの定量化

Published: January 12, 2016
doi:

Summary

This paper describes a method by which the vascular architecture in the brain can be quantified using in vivo and ex vivo two-photon microscopy.

Abstract

Human Immunodeficiency Virus 1 (HIV-1) infection frequently results in HIV-1 Associated Neurocognitive Disorders (HAND), and is characterized by a chronic neuroinflammatory state within the central nervous system (CNS), thought to be driven principally by virally-mediated activation of microglia and brain resident macrophages. HIV-1 infection is also accompanied by changes in cerebrovascular blood flow (CBF), raising the possibility that HIV-associated chronic neuroinflammation may lead to changes in CBF and/or in cerebral vascular architecture. To address this question, we have used a mouse model for HIV-induced neuroinflammation, and we have tested whether long-term exposure to this inflammatory environment may damage brain vasculature and result in rarefaction of capillary networks. In this paper we describe a method to quantify changes in cortical capillary density in a mouse model of neuroinflammatory disease (HIV-1 Tat transgenic mice). This generalizable approach employs in vivo two-photon imaging of cortical capillaries through a thin-skull cortical window, as well as ex vivo two-photon imaging of cortical capillaries in mouse brain sections. These procedures produce images and z-stack files of capillary networks, respectively, which can be then subjected to quantitative analysis in order to assess changes in cerebral vascular architecture.

Introduction

ヒト免疫不全ウイルス1(HIV-1)ウイルス感染の急性期の間に脳に侵入し、かつ生産両方ミクログリア及び脳の常在マクロファージ、それらの活性化につながる感染 – 及び両方宿主由来の炎症性メディエーターおよび可溶性HIV-1の放出をそのような(1,2に見直さ)Tatおよびgp120のようvirotoxins。その結果、慢性神経炎症状態は、HIV-1関連神経認知障害(手)3-5の病因に寄与していると考えられるCNS、に設立されてしまいます。

HIV-1のTatまたはマウスのCNS ​​内のインターロイキン(IL)-17Aの慢性的過剰発現は、微小血管希薄6,7をもたらすことが示されています。これには、慢性神経炎症が脳血管系への影響を介して手の病因に貢献するかもしれないという可能性を提起します。さらに、この問題を調べるために、我々は、脳血管STRUCを定量化する方法を開発しましたトゥーレス。

この論文では、セグメント長、総セグメントの長さを意味する毛細管の直径、及び薄い頭骨皮質窓を通して毛細管ネットワークのインビボイメージング用いて全毛細管容積平均、毛細管ノード、キャピラリーセグメントの数を定量化するための方法を記載して(前述の修飾されましたプロトコル)8,9、ならびに二光子顕微鏡を用いて脳切片 ex vivoイメージング。脳スライス内の毛細血管網 ex vivoイメージングは、三次元、完全な再構築を可能にしながら、in vivoでの薄頭蓋骨皮質ウィンドウは、脳環境の保全を可能にするので、この組み合わせアプローチは、脳血管のパラメータの全体的な定量を提供します毛細血管ネットワーク – 次に、市販のソフトウェアを用いて定量することができます。

Protocol

動物資源上ロチェスター大学の大学の委員会は、本論文で実行されたすべての手順を承認しました。 1.手術前の準備(およびマウス) 必要なすべての機器と手術領域を準備します。事前に70%エタノールを使用して、手順の間に使用されるすべてのツールを滅菌します。必要に応じて、ツールを殺菌するためにガラスビーズ滅菌器やオートクレーブを使用します?…

Representative Results

薄頭蓋骨皮質ウィンドウは、皮質毛細血管の in vivo二光子イメージング( 図1)を可能にします。画像に適した領域は、多数の、明確な毛細血管( 図1A)を示しています 。同じ視野において、いかなる動脈細胞壁の自己蛍光が存在しない、第二高調波11( 図1B)によって誘導されるコラーゲンの蛍光などの他の蛍光?…

Discussion

ここに記載された方法は、実験モデル/設定の広範囲の脳微小血管構造を分析するために適用することができます。この方法の成功のために、3つの重要なステップを習得する必要があります。まず、薄頭蓋骨窓は、頭蓋骨または基礎脳に損傷を与えてはなりません。それは間伐時に頭蓋骨に穴を開け、または熱誘導性の血管漏出を引き起こすことは容易です。蛍光色素は、焦点面に漏出し、?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Maria Jepson, Dr. Paivi Jordan, and Dr. Linda Callahan at the University of Rochester Multiphoton Core for technical advice throughout the completion of this protocol. We also thank Dr. Changyong Feng for expert statistical advice, and Dr. Maiken Nedergaard at the University of Rochester Medical Center for the headplate design used in this paper. This work was supported in part by grants T32GM007356 and R01DA026325 from the National Institutes of Health (NIH); and by the University of Rochester Center for AIDS Research grant P30AI078498 (NIH).

Materials

Leica Microscope Leica Inc. MZ8
High Intensity Illuminator Dolan-Jenner 180
Heating Pad Stryker  TP3E
T/PUMP Gaymar Industries, Inc. TP-500
TEC-4 Isoflurane Vaporizer Datex Ohmeda 447
Artificial Tear Gel Butler AHS 7312
Povidone-Iodine solution  Aplicare 52380-1855-9
Extra Fine Bonn Scissors Fine Science Tools 14084-08
Dumot #5 Forceps Fine Science Tools 11295-10
Dumont #5/45 Forceps Fine Science Tools 11251-35
Ferric Chloride Solution Ricca Chemical Company 3120-16
Loctite 454 Prism Instant Adhesive Gel Henkel 45404
Dental Cement Stoelting 51459
Microtoruqe II Handpiece Kit Pearson Dental R14-0002
005 Burr for Micro Drill Fine Science Tools 19007-05
Norland Blade (Dental Microblade) Salvin Dental 6900
Urethane Sigma-Aldrich U2500 Group 2B Carcinogen
Braided Suture Ethicon 735G
Vannas Spring Scissors Fine Science Tools 15000-03
 Arterial Catheter SAI Infusion Technologies MAC-01 The end of the catheter was manually stretched out in order to decrease its diameter. 
Blood Pressure Moniter World Precision Intruments SYS-BP1
Blood Pressure Transducer and Cable World Precision Intruments BLPR2
RAPIDLab Blood Gas Analyzer  Siemens  248
40 μl Capillary Tube VWR 15401-413
Texas Red-dextran (70,000 MW, 10 mg/kg dissolved in saline) Invitrogen D-1830
Adult Mouse Brain Slicer Matrix Zivic Instruments BSMAS001-1
Olympus Fluoview 1000 AOM-MPM Multiphoton Microscope Olypmus FV-1000 MPE
MaiTai HP DeepSee Ti:Sa laser Spectra-Physics
ImageJ Software National Institutes of Health (NIH) Available at http://rsb.info.nih.gov/ij/download.html
Amira Software Visage Imaging 

References

  1. Kraft-Terry, S. D., Buch, S. J., Fox, H. S., Gendelman, H. E. A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron. 64 (1), 133-145 (2009).
  2. Ghafouri, M., Amini, S., Khalili, K., Sawaya, B. E. HIV-1 associated dementia: symptoms and causes. Retrovirology. 3, 28 (2006).
  3. Antinori, A., et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 69 (18), 1789-1799 (2007).
  4. Clifford, D. B., Ances, B. M. HIV-associated neurocognitive disorder. The Lancet. Infectious diseases. 13 (11), 976-986 (2013).
  5. Lindl, K. A., Marks, D. R., Kolson, D. L., Jordan-Sciutto, K. L. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 5 (3), 294-309 (2010).
  6. Zimmermann, J., et al. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PloS one. 8 (2), e57307 (2013).
  7. Silva, J. N., et al. Chronic central nervous system expression of HIV-1 Tat leads to accelerated rarefaction of neocortical capillaries and loss of red blood cell velocity heterogeneity. Microcirculation. 21 (7), 664-676 (2014).
  8. Marker, D. F., Tremblay, M. E., Lu, S. M., Majewska, A. K., Gelbard, H. A. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. Journal of visualized experiments : JoVE. (43), (2010).
  9. Kleinfeld, D., Mitra, P. P., Helmchen, F., Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America. 95 (26), 15741-15746 (1998).
  10. Bruce-Keller, A. J., et al. Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia. 56 (13), 1414-1427 (2008).
  11. Zoumi, A., Yeh, A., Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proceedings of the National Academy of Sciences of the United States of America. 99 (17), 11014-11019 (2002).
  12. Silva, J., et al. Transient hypercapnia reveals an underlying cerebrovascular pathology in a murine model for HIV-1 associated neuroinflammation: role of NO-cGMP signaling and normalization by inhibition of cyclic nucleotide phosphodiesterase-5. Journal of neuroinflammation. 9, 253 (2012).
  13. Farber, N. E., et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology. 87 (5), 1191-1198 (1997).

Play Video

Cite This Article
Nishimura, C., Polesskaya, O., Dewhurst, S., Silva, J. N. Quantification of Cerebral Vascular Architecture using Two-photon Microscopy in a Mouse Model of HIV-induced Neuroinflammation. J. Vis. Exp. (107), e53582, doi:10.3791/53582 (2016).

View Video