Summary

纳米尺寸钛酸二氢钠的合成和化学反应

Published: February 23, 2016
doi:

Summary

The surfactant mediated sol-gel synthesis of nanosized monosodium titanate is described, along with preparation of the corresponding peroxide modified material. An ion-exchange reaction with Au(III) is also presented.

Abstract

本文描述的合成和钛酸纳米钠的过氧化物改性(nMST),用离子交换反应一起装入用Au(III)离子的材料。合成方法是从用于生产微米级的单钠钛酸(MST),与几个重要的修改,包括改变试剂浓度,省略颗粒种子步骤,和引入非离子表面活性剂,以促进控制溶胶 – 凝胶方法得到的颗粒的形成和生长。所得nMST材料表现出与颗粒直径的范围为100至150纳米的单分散分布球状颗粒形态。该nMST材料被发现具有285 2ğ-1,这是比级比微米尺寸的MST高一个数量级以上的布鲁诺尔-埃米特-特勒(BET)表面积。该nMST的等电点测定3.34个pH单位,这是一个pH单位比为微米尺寸的MST测定低。 ŧ他nMST材料被发现作为一个金(Ⅲ)-exchange nanotitanate制备弱酸性的条件下有效的离子交换剂。此外,对应peroxotitanate的形成通过与过氧化氢的nMST的反应证明。

Introduction

二氧化钛和碱金属钛酸盐在各种应用中广泛使用,例如在涂料和护肤品颜料和作为能量转换和利用光催化剂1-3酸钠钛酸盐已被证明是除去各种阳离子有效的材料在宽范围的通过阳离子交换反应的pH条件4-7

除了刚才所描述的应用中,微米大小的钠钛酸盐和钠peroxotitanates最近已显示也用作治疗金属递送平台。在本申请中,治疗性金属离子如金(Ⅲ),金(Ⅰ),和铂(II)被用于(MST)钛酸酯钠的钠离子与贵金属交换钛酸交换。 在体外试验表明抑制癌症和细菌细胞通过未知的机理的生长。-8,9-

从历史上看,钠钛酸盐已经被烯生产同时使用溶胶-凝胶和导致具有颗粒尺寸范围从几到几百微米的细粉末热液合成技术。4,5,10,11最近,合成方法已被报道,产生纳米二氧化钛,金属-掺杂钛氧化物,和各种各样的其他金属钛酸盐。例子包括钠氧化钛纳米管(NaTONT)或纳米线通过在升高的温度和压力下在过量氢氧化钠的二氧化钛的反应,由过氧钛酸在升高的温度和压力下,15钠过量氢氧化钠的反应12-14钠钛酸纳米纤维和钛酸铯纳米纤维由酸交换的微米大小的钛酸盐的脱层。16

纳米钠钛酸盐和钠peroxotitanates的合成是感兴趣的增强离子交换动力学,它们通常通过膜扩散或颗粒内diffu控制锡永。这些机制是由离子交换剂的颗粒尺寸在很大程度上控制。此外,作为治疗性金属递送平台,钛酸材料的粒度将预期显著影响金属交换的钛酸盐和癌症和细菌细胞之间的相互作用的性质。例如,细菌细胞,这是典型的0.5的量级 – 2微米,可能会与微米大小的颗粒与纳米颗粒的不同的相互作用。此外,非吞噬的真核细胞已被证明为只与一个尺寸小于1微米。17。因此内在化粒子,纳米钠钛酸盐的合成也是感兴趣的便于从钛酸递送平台金属递送和细胞摄取。减少钠钛酸盐和peroxotitanates的尺寸也将增加在金属离子分离的有效容量和提高材料的光化学性质。16,18 </ SUP>本文介绍了轻度溶胶-凝胶条件下合成纳米钛酸味精(nMST)的协议修改19的nMST相应过氧化物的准备。用离子交换反应加载用Au(III)中的nMST沿也进行了描述。

Protocol

1.纳米钛酸钠的合成(nMST) 通过加入0.58毫升25重量%甲醇钠溶液7.62毫升异丙醇,接着1.8毫升异丙醇钛制备的10ml溶液#1。 通过加入0.24毫升超纯水的9.76毫升异丙醇制备的10ml溶液#2。 添加280毫升异丙醇到一个三颈500毫升圆底烧瓶中,接着0.44毫升的Triton X-100的(平均MW 625克/摩尔)。搅拌用磁力搅拌棒将溶液很好。 制备双通道注射器泵以0.333毫升/分钟的速率提供解决方?…

Representative Results

台MST使用溶胶-凝胶方法,其中,四异丙氧基钛(Ⅳ)(TIPT),甲醇钠,和水合并合成并在异丙醇以形成台MST的晶种颗粒的反应。4微米大小的颗粒,然后通过控制加入的额外生长试剂的量。所得颗粒设有无定形芯和具有约10纳米宽的尺寸在长度为50纳米的外部纤维区20 图1A显示了典型的颗粒尺寸分布,如通过动态光散射(DLS),为微米级的MST测量?…

Discussion

的外来水的存在,例如从不纯试剂,可以改变该反应的结果,从而导致更大或更多分散粒子。因此,应注意,以确保使用干燥的反应物。的异丙醇钛和甲醇钠应储存在干燥器在不使用时。高纯度的异丙醇应也可用于合成。

温度被发现从凝胶起到产品的转化了关键的作用,以颗粒形式。之前和之后加热至82℃显示产物显示为一个半粒状/半凝胶状状态加热之前,但加热产物后出?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank the Laboratory Directed Research and Development program at the Savannah River National Laboratory (SRNL) for funding. We thank Dr. Fernando Fondeur for collection and interpretation of the FT-IR spectra and Dr. John Seaman of the Savannah River Ecology Laboratory for the use of the DLS instrument for particle size measurements. We also thank the Dr. Daniel Chan of the University of Washington and the National Institute of Health (Grant #1R01DE021373-01), for funding experiments investigating the ion exchange reactions with Au(III). The Savannah River National Laboratory is operated by Savannah River Nuclear Solutions, LLC for the Department of Energy under contract DE-AC09-08SR22470.

Materials

Titanium(IV) isopropoxide Sigma Aldrich 377996 99.999% trace metals basis
Isopropyl alcholol, 99.9% Sigma Aldrich 650447 HPLC grade (Chomasolv)
Sodium methoxide in methanol Sigma Aldrich 156256 25 wt%
Triton X-100 Sigma Aldrich T9284 BioXtra
hydrogen tetrachloroaurate(III) trihydrate Sigma Aldrich G4022 ACS reagent grade
hydrogen peroxide (30 wt%) Fisher H325 Certified ACS
10-mL syringes Fisher 14-823-16E
Dual channel syringe pump Cole Parmer EW-74900-10 Or equivalent programmable dual channel syringe pump
Tygon tubing 1/8 inch ID, 1/4 inch OD Cole Parmer EW-0640776
Tygon tubing 1/16 inch ID, 1/8 inch OD Cole Parmer EW-0740771
0.1-µm Nylon filter Fisher R01SP04700
Labquake shaker rotisserie Thermo Scientific 4002110Q

References

  1. O’Regan, B., Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 353, 737-740 (1991).
  2. Frank, A. J., Kopidakis, N., van de Lagemaat, J. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties. Coord. Chem. Rev. 248 (13-14), 1165-1179 (2004).
  3. Mor, G. K., Varghese, O. K., Paulose, M., Shankar, K., Grimes, C. A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells. 90 (14), 2011-2075 (2006).
  4. Dosch, R. G. . Use of titanates in decontamination of defense waste. Report RS-8232-2/50318. , (1978).
  5. Sylvester, P., Clearfield, A. The removal of strontium from simulated Hanford tank wastes containing complexants. Sep. Sci. Technol. 34 (13), 2539-2551 (1999).
  6. Manna, B., Dasgupta, M., Ghosh, U. C. Crystalline hydrous titanium(IV) oxide (CHTO): an arsenic(III) scavenger from natural water. J. Water Supply Res. T. 53, 483-495 (2004).
  7. Elvington, M. C., Click, D. R., Hobbs, D. T. Sorption behavior of monosodium titanate and amorphous peroxotitanate materials under weakly acidic conditions. Sep. Sci. Technol. 45 (1), 66-72 (2010).
  8. Wataha, J. C., et al. Titanates deliver metal ions to human monocytes. J. Mater. Sci.: Mater. Med. 21 (4), 1289-1295 (2010).
  9. Chung, W. O., et al. Peroxotitanate- and monosodium metal-titanate compounds as inhibitors of bacterial growth. J. Biomed. Mater. Res., Part A. 97 (3), 348-354 (2011).
  10. Hobbs, D. T., et al. Strontium and actinide separations from high level nuclear waste solutions using monosodium titanate 1. Simulant testing. Sep. Sci. Technol. 40 (15), 3093-3111 (2005).
  11. Ramirez-Salgdo, J., Djrado, E., Fabry, P. Synthesis of sodium titanate composites by sol-gel method for use in gas potentiometric sensors. J. Eur. Ceram. Soc. 24 (8), 2477-2483 (2004).
  12. Yang, J., et al. Study on composition, structure and formation process of nanotube Na2Ti2O4(OH)2. Dalton Trans. 2003 (20), 3898-3901 (2003).
  13. Chen, W., Guo, X., Zhang, S., Jin, Z. TEM study on the formation mechanism of sodium titanate nanotubes. J. Nanopart. Res. 9 (6), 1173-1180 (2007).
  14. Meng, X., Wang, D., Liu, J., Zhang, S. Preparation and characterization of sodium titanate nanowires from brookite nanocrystallites. Mater. Res. Bull. 39 (14-15), 2163-2170 (2004).
  15. Yada, M., Goto, Y., Uota, M., Torikai, T., Watari, T. Layered sodium titanate nanofiber and microsphere synthesized from peroxotitanic acid solution. J. Eur. Ceram. Soc. 26 (4-5), 673-678 (2006).
  16. Stewart, T. A., Nyman, M., deBoer, M. P. Delaminated titanate and peroxotitanate photocatalysts. Appl. Catal. B. 105 (1-2), 69-76 (2011).
  17. Rejman, J., Oberle, V., Zuhorn, I. S., Hoekstra, D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 377 (1), 159-169 (2004).
  18. Hobbs, D. T., Taylor-Pashow, K. M. L., Elvington, M. C. Formation of nanosized metal particles on a titanate carrier. US patent application. , (2015).
  19. Elvington, M. C., Tosten, M., Taylor-Pashow, K. M. L., Hobbs, D. T. Synthesis and characterization of nanosize sodium titanates. J. Nanopart. Res. 14, 1114 (2012).
  20. Duff, M. C., Hunter, D. B., Hobbs, D. T., Fink, S. D., Dai, Z., Bradley, J. P. Mechanisms of strontium and uranium removal from high-level radioactive waste simulant solutions by the sorbent monosodium titanate. Environ. Sci. Technol. 38 (19), 5201-5207 (2004).
  21. Puangpetch, T., Sreethawong, T., Chavadej, S. Hydrogen production over metal-loaded mesoporous-assembled SrTiO3 nanocrystal photocatalysts: effects of metal type and loading. Int. J. Hydrogen Energy. 35 (13), 6531-6540 (2010).
  22. Fan, X., et al. Facile method to synthesize mesoporous multimetal oxides (ATiO3, A = Sr, Ba) with large specific surface areas and crystalline pore walls. Chem. Mater. 22 (4), 1276-1278 (2010).
  23. Rossmanith, R., et al. Porous anatase nanoparticles with high specific area prepared by miniemulsion technique. Chem. Mater. 20 (18), 5768-5780 (2008).
  24. Wu, Y., Zhang, Y., Xu, J., Chen, M., Wu, L. One-step preparation of PS/TiO2 nanocomposite particles via miniemulsion polymerization. J. Colloid Interface Sci. 343 (1), 18-24 (2010).
  25. Jiang, C., Ichihara, M., Honmaa, I., Zhou, H. Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochim. Acta. 52 (23), 6470-6475 (2007).
  26. Bouras, P., Stathatos, E., Lianos, P. Pure versus metal-ion-doped nanocrystalline titania for photocatalysis. Appl. Catal. B. 73 (1-2), 51-59 (2007).
  27. Bonino, R., et al. Ti-Peroxo species in the TS-1/H2O2/H2O system. J. Phys. Chem. B. 108 (11), 3573-3583 (2004).
  28. Bordiga, S., et al. Resonance Raman effects in TS-1: the structure of Ti(IV) species and reactivity towards H2O, NH3 and H2O2: an in situ study. Phys. Chem. Chem. Phys. 2003 (5), 4390-4393 (2003).
  29. Vacque, V., Sombret, B., Huvenne, J. P., Legrand, P., Suc, S. Characterization of the O-O peroxide band by vibrational spectroscopy. Spectrochim. Acta Part A. 53 (1), 55-66 (1997).

Play Video

Cite This Article
Elvington, M. C., Taylor-Pashow, K. M. L., Tosten, M. H., Hobbs, D. T. Synthesis and Reaction Chemistry of Nanosize Monosodium Titanate. J. Vis. Exp. (108), e53248, doi:10.3791/53248 (2016).

View Video