Summary

联合穿梭盒子训练与电的Cortex记录和刺激作为一种工具来研究感知和学习

Published: October 22, 2015
doi:

Summary

穿梭箱回避学习是行之有效的行为神经。本协议描述了如何穿梭盒子学习啮齿类动物可以与特定地点的电气皮层内微刺激(ICMS) 体内录音作为研究学习和感知的多个方面的工具的同时慢性相结合。

Abstract

穿梭箱回避学习是行为神经科学和实验设置一个行之有效的方法是传统的定制;必要的设备现在可以通过一些商业公司。该协议提供了一个双向穿梭箱回避学习范式的啮齿类动物的详细说明(在这里长爪沙鼠, 长爪沙鼠 )的结合位点特异性电气皮层内微刺激(ICMS),并同时慢性电在体内录音。详细的协议,适用于研究在不同的啮齿类动物的学习行为和感知的多个方面。

听觉皮层电路如下条件刺激的位点特异性ICMS作为工具来测试特定的传入,传出和皮质内连接的感知相关。不同的活动模式可以通过使用不同的刺激电极ARR被诱发AYS的地方,层依赖ICMS或远处ICMS网站。利用行为信号检测分析可以判断哪个刺激策略是最有效的用于引发一个行为上可检测的和显着信号。此外,使用不同的电极设计(表面电极,深部电极等)并行多信道-录音允许对这种学习过程的时间过程研究神经元观测。这将是讨论的行为设计的变化是如何能提高认知的复杂性( 探测,识别,逆转学习)。

Introduction

行为神经科学的一个基本目标是建立神经元的结构和功能特性,学习和认知之间的具体联系。与感知和学习有关的神经活性可以通过在多个位点的动作电位并局部场电位的各种大脑结构电生理记录进行研究。尽管电生理记录提供的神经活动和行为之间的相关协会,直接电皮层内微刺激(ICMS)一个多世纪以来一直是最直接的方法神经元的兴奋的人群和他们的行为和感知效果1的测试因果关系– 3。许多研究表明,动物是能够利用电刺激的知觉的任务范围内,例如初级视4吨取决于刺激位置的各种空间和时间属性onotopic 5,或躯体6区皮层。在皮层电诱发活动的传播主要是通过轴索纤维及其分布的突触连接2,在皮质,显然是一层依赖7的布局。得到的多突触活化ICMS诱发是今后更广泛的比电场2,8,9的直接影响。这就解释了为什么感性效应阈值由皮质内微刺激诱 ​​发可以强烈地层依赖8,10,11和站点相关的9。最近的一项研究证明了细节,上层的刺激产生的主要supragranular层corticocortical电路更广泛的激活,而皮质导致更深层的一个焦点,反复corticoefferent intracolumnar激活刺激。并行行为实验表明,后者具有低得多的听觉检测苏氨酸esholds 8。因此,位点特异性ICMS作为条件刺激的优点是利用与电生理记录结合因果涉及特定皮质电路激活8学习和感知在穿梭箱行为的措施。

双向穿梭箱范式是研究回避学习12一个完善的实验室设备。梭箱包括2个舱室的一道坎或门口分开。甲条件刺激(CS),其通过适当的信号象光或声音来表示,是偶然随后厌恶无条件刺激(US),如例如一个足部电击在金属网格地板。受试者可以学习,以避免与美国通过从一个穿梭箱隔室中响应于所述CS穿梭到其他。穿梭箱学习涉及区分学习阶段的序列13,14:首先,科学预测,美国从CS由经典条件和从美国逃出用仪器调节,因为美国是在穿梭终止。在下一阶段,科目学习完全避免美国通过穿梭于应对美国发病前的CS( 回避反应)。一般情况下,穿梭箱学习包括经典性条件反射,有助于调理,以及根据学习阶段14的目标导向的行为。

梭箱程序,可以方便地建立,一般经过几次的日常训练课15产生强大的行为– 17。除了简单的逃避性(检测),穿梭箱可进一步用于通过采用GO / NOGO范式研究刺激歧视。这里,训练动物,以避免与美国由一个条件反应(CR)(去行为;梭成相对隔室)响应于<STRONG>去刺激(CS +)和NOGO行为 (留在当前车厢;无CR)响应NOGO刺激(CS-)并行微刺激和记录神经活动的高密度多电极阵列允许学习。的生理机制成功的学习标的。几个技术细节,根本的穿梭盒子训练,ICMS和平行电成功的组合,将被讨论。

Protocol

在这项工作中提出的所有实验均与由德国法律对实验动物的保护规定的道德标准的协议进行的。实验批准了萨克森 – 安哈尔特州的伦理委员会。 1.订造多通道电极阵列的微刺激和记录客户定制微刺激阵列对于提供ICMS,准备刺激电极使用3厘米长的聚四氟乙烯绝缘不锈钢丝所需的空间设计(2个通道位置横向阵列)(O带隔离= 50微米)。 见图2。 ?…

Representative Results

本节介绍穿梭盒子学习在蒙古沙鼠一个代表性的例子。受试者被训练来区分2激励电极之间的ICMS站点植入700微米彼此分离在听觉皮层(图1和2)。刺激阵列可定制在不同的空间设计( 图1)。在这里,两个ICMS站点歧视与内呈现30 CS +和CS每次( 图3A-C)次训练的经验教训。这是通过的命中和误报反应的完全缓解率在整个连续7个培训班( 图3B)</…

Discussion

此协议通过使用双向厌恶足部电击控制穿梭盒子系统描述同时位点特异性ICMS和多通道电生理记录在一个学习的动物的方法。协议强调技术的关键概念为这样的组合,并指出只有通过它的共同接地电极接地的动物,留下gridfloor在浮动电压的重要性。在这里,听梭箱学习应用于长爪沙鼠的学习相关的塑料重组这些动物的听觉皮层中得到了广泛的8,12,14,15,21,22研究。然而,所描述的协议可以适于…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由来自Deustche研究联合会DFG和莱布尼茨研究所神经生物学的资助。我们感谢玛丽亚 – 滨海Zempeltzi和凯萨琳·奥尔的技术援助。

Materials

Teflon-insulated stainless steel wire California Fine Wire diam. 50µm w/ isolation
Pin connector system  Molex Holding GmbH 510470200 1.25 mm pitch PicoBlade
TEM grid Quantifoil Science Services EQ225-N27
Dental acrylic Paladur Heraeus Kulzer 64707938
Hand-held drill OmniDrill35 WPI  503599
Ketamine 500mg/10ml Ratiopharm GmbH 7538837
Rompun 2%, 25ml Bayer Vital GmbH 5066.0
Sodium-Chloride 0.9%, 10ml B.Braun AG  PRID00000772
Lubricant KY-Jelly Johnson & Johnson
Shuttle-box E10-E15 Coulbourn Instruments H10-11M-SC
Stimulus generator MCS STG 2000 Multichannel Systems
Plexon Headstage cable 32V-G20 Plexon Inc. HSC/32v-G20
Plexon Headstage  32V-G20 Plexon Inc. HST/32v-G20
PBX preamplifier 32 channels Plexon Inc. 32PBX box
Multichannel Acquisition System Plexon Inc. MAP 32/HLK2
Cryostate CM3050 S Leica Microsystems GmbH
Signal processing Card Ni-Daq National Instruments
Lab StandardTM Stereotaxic Instruments Stoelting Co. 
Audio attenator g.pah g.pah Guger technologies
Cresyl violet acetate Roth GmbH 7651.2
Roticlear  Roth GmbH A538.1
Sodium acetate trihydrate Roth GmbH 6779.1
Potassium hexacyanoferrat(II) trihydrate Roth GmbH 7974.2
Di-sodium hydrogen phospahte dihydrate Merck 1,065,801,000
ICM Impedance Conditioning Module FHC 55-70-0
Animal Temperarture Controler World Precision Instruments ATC2000

References

  1. Cohen, M. R., Newsome, W. T. What electrical microstimulation has revealed about the neural basis of cognition. Current Opinion in Neurobiology. 14 (2), 169-177 (2004).
  2. Histed, M. H., Bonin, V., Reid, R. C. Direct activation of sparse, distributed populations of cortical neurons by electrical microstimulation. Neuron. 63 (4), 508-522 (2009).
  3. Histed, M. H., Ni, A. M., Maunsell, J. H. R. Insights into cortical mechanisms of behavior from microstimulation experiments. Progress in Neurobiology. 103, 115-130 (2013).
  4. Bradley, D. C., et al. Visuotopic mapping through a multichannel stimulating implant in primate V1. Journal of Neurophysiology. 93, 1659-1670 (2005).
  5. Scheich, H., Breindl, A. An Animal Model of Auditory Cortex Prostheses. Audiology and Neurootology. 7 (3), 191-194 (2002).
  6. Romo, R., Hernández, A., Zainos, A., Salinas, E. Somatosensory discrimination based on cortical microstimulation. Nature. 392, 387-390 (1998).
  7. Douglas, R. J., Martin, K. A. C. Recurrent neuronal circuits in the neocortex. Current Biology. 17 (13), 496-500 (2004).
  8. Happel, M. F. K., Deliano, M., Handschuh, J., Ohl, F. W. Dopamine-modulated recurrent corticoefferent feedback in primary sensory cortex promotes detection of behaviorally relevant stimuli. The Journal of Neuroscience. 34 (4), 1234-1247 (2014).
  9. Deliano, M., Scheich, H., Ohl, F. W. Auditory cortical activity after intracortical microstimulation and its role for sensory processing and learning. The Journal of Neuroscience. 29 (50), 15898-15909 (2009).
  10. DeYoe, E. A., Lewine, J. D., Doty, R. W. Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. Journal of Neurophysiology. 94 (5), 3443-3450 (2005).
  11. Tehovnik, E. J., Slocum, W. M., Schiller, P. H. Delaying visually guided saccades by microstimulation of macaque V1: spatial properties of delay fields. The European Journal of Neuroscience. 22 (10), 2635-2643 (2005).
  12. Wetzel, W., Wagner, T., Ohl, F. W., Scheich, H. Categorical discrimination of direction in frequency-modulated tones by Mongolian gerbils. Behavioural Brain Research. 91, 29-39 (1998).
  13. Cain, C. K., LeDoux, J. E. Escape from fear: a detailed behavioral analysis of two atypical responses reinforced by CS termination. Journal of Experimental Psychology. Animal behavior processes. 33, 451-463 (2007).
  14. Stark, H., Rothe, T., Deliano, M., Scheich, H. Dynamics of cortical theta activity correlates with stages of auditory avoidance strategy formation in a shuttle-box. 신경과학. 151, 467-475 (2008).
  15. Ohl, F. W., Wetzel, W., Wagner, T., Rech, A., Scheich, H. Bilateral ablation of auditory cortex in Mongolian gerbil affects discrimination of frequency modulated tones but not of pure tones. Learning & Memory. 6 (4), 347-362 (1999).
  16. Kurt, S., Ehret, G. Auditory discrimination learning and knowledge transfer in mice depends on task difficulty. Proceedings of the National Academy of Sciences of the United States of America. 107 (18), 8481-8485 (2010).
  17. Happel, M. F. K., et al. Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proceedings of the National Academy of Sciences of the United States of America. 111 (7), 2800-2805 (2014).
  18. Thomas, H., Tillein, J., Heil, P., Scheich, H. Functional organization of auditory cortex in the mongolian gerbil (Meriones unguiculatus). I. Electrophysiological mapping of frequency representation and distinction of fields. The European journal of neuroscience. 5, 882-897 (1993).
  19. Budinger, E., Heil, P., Scheich, H. Functional organization of auditory cortex in the Mongolian gerbil (Meriones unguiculatus). III. Anatomical subdivisions and corticocortical connections. European Journal of Neuroscience. 12, 2425-2451 (2000).
  20. Langford, D. J., et al. Coding of facial expressions of pain in the laboratory mouse. Nature Methods. 7 (6), 447-449 (2010).
  21. Ohl, F. W., Scheich, H., Freeman, W. J. Change in pattern of ongoing cortical activity with auditory category learning. Nature. 412 (6848), 733-736 (2001).
  22. Scheich, H., et al. Behavioral semantics of learning and crossmodal processing in auditory cortex: the semantic processor concept. Hearing Research. 271 (1-2), 3-15 (2011).
  23. Happel, M. F. K., Jeschke, M., Ohl, F. W. Spectral integration in primary auditory cortex attributable to temporally precise convergence of thalamocortical and intracortical input. The Journal of Neuroscience. 30 (33), 11114-11127 (2010).
  24. Ranck, J. B. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Research. 98, 417-440 (1975).
  25. Clark, K. L., Armstrong, K. M., Moore, T. Probing neural circuitry and function with electrical microstimulation. Proceedings. Biological sciences / The Royal Society. 278 (1709), 1121-1130 (2011).
  26. Ilango, A., Shumake, J., Wetzel, W., Scheich, H., Ohl, F. W. Electrical stimulation of lateral habenula during learning: frequency-dependent effects on acquisition but not retrieval of a two-way active avoidance response. PloS one. 8 (6), e65684 (2013).
  27. Weible, A. P., McEchron, M. D., Disterhoft, J. F. Cortical involvement in acquisition and extinction of trace eyeblink conditioning. Behavioral Neuroscience. 114, 1058-1067 (2000).
  28. Rothe, T., Deliano, M., Scheich, H., Stark, H. Segregation of task-relevant conditioned stimuli from background stimuli by associative learning. Brain Research. 1297, 143-159 (2009).

Play Video

Cite This Article
Happel, M. F., Deliano, M., Ohl, F. W. Combined Shuttle-Box Training with Electrophysiological Cortex Recording and Stimulation as a Tool to Study Perception and Learning. J. Vis. Exp. (104), e53002, doi:10.3791/53002 (2015).

View Video