Summary

简单和计算机辅助测试嗅觉的小鼠

Published: June 15, 2015
doi:

Summary

We present a simple and unbiased olfactory test in mice. With this protocol olfactory discrimination, preference, avoidance and sensitivity to a novel odor as compared to water can be assessed in single behavioral sessions. This method is indicated for a single experimenter and analysis is based on computer-assisted video processing.

Abstract

嗅觉是高度保守性和所需的繁殖和生存。

在人类中,嗅觉也是受到影响与老化的感官之一,是神经退行性疾病的一个强有力的预测。因此,嗅觉测试是用来作为一种非创伤性诊断方法用于检测早期神经功能障碍。为了了解底层网络的嗅觉敏感性的机制,嗅觉研究啮齿动物已经获得的势头在过去的十年。

在这里,我们提出了一个非常简单的,时间效率和可重复的测试嗅觉与生俱来的感知气味的敏感性和小鼠的方法没有任何事先的食物或水限制的需要。所述测试是在一熟悉的环境中进行的小鼠,仅需要的气味和臭气物质的暴露2分钟会话。进行分析, 事后 ,使用上的ImageJ计算机辅助命令并且可以是,因此,开展从头至尾由一研究员结束。

该协议不需要任何特殊的硬件或设置并标明为有兴趣测试嗅觉的感知和灵敏度任何实验室。

Introduction

嗅觉是在哺乳动物中最不发达国家和重要的感觉功能之一。在嗅觉活性的任何损害可能影响食物摄取,社会行为和,在最坏的情况下,甚至存活。在人类中,嗅觉恶化是年龄依赖性1,被认为是神经系统疾病2的强预测– 6。由宾夕法尼亚大学开发的嗅觉鉴定试验目前代表了最常用的,非侵入性,可量化,诊断测试,可以评估早期神经功能缺损7和高概率预测老年痴呆症8,9的进展之一。

嗅觉系统和嗅觉的啮齿动物中突出的可访问性,引发了人们研究的一个强烈的线条解决机制基础嗅觉功能10。我们以前曾表明的信令RECEPT的功能丧失或Notch1的影响嗅觉回避11。在这个协议中,我们使用缺乏信号配体,小鼠Jagged1的,在神经元或神经胶质细胞来研究嗅觉的性能。

先天嗅觉是由三个参数作为感知,气味和嗅觉灵敏度4区分限定。嗅觉测试在啮齿类动物可以以多种方式来完成,一些行为研究利用olfactometers,它提供气味给动物在特定的蒸气浓度和在一精确的时间框架12 – 14。尽管如此,这种仪器是昂贵的,可能只在专门的设施是可用的。在我们的工作中,我们提供了一个简单,快速,可重复的测试嗅觉的协议,这是使用挥发性气味。测试说明措施的看法,以引诱或驱蚊气味和评估的气味和水11,15,16之间的歧视。使用相同的设置,瓦特E也可以测量不同浓度16,17的灵敏度的气味。在事后计算机辅助视频处理,灵感来自页和他的同事18的工作,提供公正的结果,而实验致盲,并允许单人进行整个实验的需要。

该协议的目的是为研究小鼠嗅觉行为提供一个起始点。

Protocol

所有动物的程序是按照在用于科学目的的动物的保护与欧盟指令六十三分之二千○一十/欧盟和由当地动物保健委员会(广弗里堡,瑞士)的批准。 1.动物的制备实验动物执行对成年雄性野生型和3-5个月的婴儿转基因小鼠(C57BL / 6背景)的实验。三组小鼠的对应的野生型同窝对照组(A组,Jagged1处理FLOX / FLOX 19)和两个条件KO小鼠系(B组,Jagged1ncKO和C,Jagg…

Representative Results

感知试验测量的吸引力的花生酱和回避到2 MB酸。三组小鼠进行试验,并作为与水相比,在“气味周长”所花费的时间被量化。在偏好的测试,相比于水(T 8 = 2.52,P <0.05)对照组显示显著偏好的气味。另一方面,B组不显示任何显著吸引力的花生酱和花费更多的时间以水(叔6 = 3.22,P <0.05)。因此,它的行为不同于对照组(F = 1,7 26.39,P <0.005)。此外,C组显示无歧?…

Discussion

在这个协议中提出的测试能够评估天生的嗅觉行为的小鼠不同方面:感知气味,气味与水和对气味敏感的歧视。这个协议可以根据先前显示15的偏爱和避免规模应用于任何气味。由于该协议是基于探索行动的小鼠不显示任何运动障碍或焦虑可能影响其运动并干扰嗅觉勘探是很重要的。所描述的试验是为了对成年雄性小鼠但是它们可以适于还调查嗅觉在成年女性或老年小鼠。

<p class="jove_c…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work is funded by the Swiss National Foundation (31_138429) and Synapsis Foundation for the support of research on Alzheimer’s disease.

Materials

Mouse cage Italplast (Italy) 1144B 36 cm length x 20.5 cm width x 13.5 cm height
Chipped wood bedding Abedd (Austria) LTE E-001 3 cm high
Peanut butter Migros (Swizterland) NA 1:10
2-Methylbutyric Sigma Aldrich (Switzerland) W269514 Pure
Female Urine from fertile females of same mouse strain NA NA Dilution series
Camera Olympus (US) Camedia C-8080 MOV files
Quicktime for Java (Windows) Apple (USA) NA video plugin for visualizing MOV files
Image J for Windows NIH (USA) NA Video Processing/Analysis

References

  1. Doty, R. L., Kamath, V. The influences of age on olfaction: a review. Cognitive Science. 5, 20 (2014).
  2. Mesholam, R. I., Moberg, P. J., Mahr, R. N., Doty, R. L. Olfaction in neurodegenerative disease: a meta-analysis of olfactory functioning in Alzheimer’s and Parkinson’s diseases. Archives of Neurology. 55 (1), 84-90 (1998).
  3. Moberg, P. J., et al. Olfactory Dysfunction in Schizophrenia: A Qualitative and Quantitative Review. Neuropsychopharmacology. 21 (3), 325-340 (1999).
  4. Kovács, T. Mechanisms of olfactory dysfunction in aging and neurodegenerative disorders. Ageing Research Reviews. 3 (2), 215-232 (2004).
  5. Barrios, F. A., et al. Olfaction and neurodegeneration in HD. Neuroreport. 18 (1), 73-76 (2007).
  6. Doty, R. L. Olfaction in Parkinson’s disease and related disorders. Neurobiology of Disease. 46 (3), 527-552 (2012).
  7. Doty, R. L., Shaman, P., Dann, M. Development of the University of Pennsylvania Smell Identification Test: a standardized microencapsulated test of olfactory function. Physiology & Behavior. 32 (3), 489-502 (1984).
  8. Devanand, D. p., et al. Olfactory Deficits in Patients With Mild Cognitive Impairment Predict Alzheimer’s Disease at Follow-Up. American Journal of Psychiatry. 157 (9), 1399-1405 (2000).
  9. Conti, M. Z., et al. Odor Identification Deficit Predicts Clinical Conversion from Mild Cognitive Impairment to Dementia Due to Alzheimer’s Disease. Archives of Clinical Neuropsychology. 28 (5), 391-399 (2013).
  10. Keller, A., Vosshall, L. B. Better Smelling Through Genetics: Mammalian Odor Perception. Current opinion in neurobiology. 18 (4), 364-369 (2008).
  11. Brai, E., et al. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. European Journal of Neuroscience. 40 (10), 3436-3449 (2014).
  12. Larson, J., Hoffman, J. S., Guidotti, A., Costa, E. Olfactory discrimination learning deficit in heterozygous reeler mice. Brain Research. 971 (1), 40-46 (2003).
  13. Alonso, M., et al. Olfactory Discrimination Learning Increases the Survival of Adult-Born Neurons in the Olfactory Bulb. The Journal of Neuroscience. 26 (41), 10508-10513 (2006).
  14. Wesson, D. W., Keller, M., Douhard, Q., Baum, M. J., Bakker, J. Enhanced urinary odor discrimination in female aromatase knockout (ArKO) mice. Hormones and behavior. 49 (5), 580-586 (2006).
  15. Kobayakawa, K., et al. Innate versus learned odour processing in the mouse olfactory bulb. Nature. 450 (7169), 503-508 (2007).
  16. Witt, R. M., Galligan, M. R., Despinoy, J., Segal, R. Olfactory Behavioral Testing in the Adult Mouse. Journal of Visualized Experiments JoVE. (23), (2009).
  17. Lee, A. W., Emsley, J. G., Brown, R. E., Hagg, T. Marked differences in olfactory sensitivity and apparent speed of forebrain neuroblast migration in three inbred strains of mice. 신경과학. 118 (1), 263-270 (2003).
  18. Page, D. T., et al. Computerized assessment of social approach behavior in mouse. Frontiers in Behavioral Neuroscience. 3, 48 (2009).
  19. Nyfeler, Y., et al. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self-renewal. Embo J. 24 (19), 3504-3515 (2005).
  20. Tong, M. T., Peace, S. T., Cleland, T. A. Properties and mechanisms of olfactory learning and memory. Frontiers in Behavioral Neuroscience. 8, (2014).
  21. Corthell, J., Stathopoulos, A., Watson, C., Bertram, R., Trombley, P. Olfactory Bulb Monoamine Concentrations Vary with Time of Day. 신경과학. 247, 234-241 (2013).
  22. Lehmkuhl, A. M., Dirr, E. R., Fleming, S. M. Olfactory assays for mouse models of neurodegenerative disease. Journal of Visualized Experiments: JoVE. (90), e51804 (2014).

Play Video

Cite This Article
Brai, E., Alberi, L. Simple and Computer-assisted Olfactory Testing for Mice. J. Vis. Exp. (100), e52944, doi:10.3791/52944 (2015).

View Video