Summary

使用摇蚊科(双翅目)的表面浮蛹蜕为快速生物议定书水体

Published: July 24, 2015
doi:

Summary

Rapid bioassessment protocols using benthic macroinvertebrates are often used to monitor and assess water quality. An efficient protocol involves collections of Chironomidae surface-floating pupal exuviae (SFPE). Here, techniques for field collection, laboratory processing, slide mounting, and identification of Chironomidae SFPE are described.

Abstract

利用底栖动物组合快速生物协议已被成功地用于评估对水质影响的人。不幸的是,传统的底栖幼虫抽样方法,如浸渍网,可以是费时和​​昂贵的。另一种方案包括收集的摇蚊表面浮蛹蜕(SFPE)。摇蚊是蝇(双翅目),其不成熟的阶段,通常发生在水生境的物种丰富的家庭。摇蚊成虫从水中冒出,离开他们的蛹皮或蜕皮,浮于水面。蜕经常沿着积累银行或障碍物后面由风或水流,在那里他们可以收集,评估摇蚊的多样性和丰富性的作用。摇蚊可作为重要的生物学指标,因为一些物种更耐受污染比其他。因此,收集SFPE的相对丰度和物种组成反映水质变化。这里,与现场收集,实验室加工,滑动安装,并鉴定摇蚊SFPE的相关联的方法进行详细说明。该SFPE方法的优点包括最小干扰以采样区,有效和经济的样品采集和实验室处理,便于识别,适用性在几乎所有的水生环境和生态系统压力的一个潜在的更敏感量度。这些限制包括无法确定幼虫微生境使用,无法确定蛹蜕物种,如果他们没有得到与成年男性有关。

Introduction

生物监测方案,它使用活的生物体来评估环境健康,经常被用来评价水质或监测生态系统恢复计划的成功。自1989年1快速生物的协议(RBP)利用大型底栖无脊椎动物组合已经国家水资源管理机构的欢迎。传统的抽样大型底栖动物的限制性商业惯例的方法,如畅游网,Surber取样和采样赫斯2,可时间耗时,昂贵,并可能只从一个特定的微生3测量组合。生成有关特定水体的生物信息的有效,替代RBP涉及收集摇蚊表面浮蛹蜕(SFPE)3。

该摇蚊科(昆虫纲:双翅目),俗称非蠓,是holometabolous苍蝇正在成为成人之前,通常发生在水环境 60;在水的表面。摇蚊的家庭是物种丰富,全球约有描述5000种;然而,多达20000物种估计存在4。摇蚊是在记录水与居住环境的质量,因为其高度多样性和可变污染公差等级5许多水生生态系统中非常有用。此外,他们往往在水生系统中最丰富和广泛的大型底栖动物,一般占50%以上的品种,在社会5,6。继陆地成人出现,蛹蜕(投蛹皮)仍浮在水面( 图1)。蛹蜕皮积累沿银行或后面的障碍物通过风或水流的作用,可以很容易和快速地收集,得到与上24-48小时7中已经出现摇蚊物种的综合样本。

ntent“>的相对丰度,并收集SFPE的分类构成反映水质,考虑到一些种类非常宽容的污染,有的则是相当敏感的5 SFPE方法比传统的摇蚊幼虫的采样技术许多优点,包括:(1)最小,如果有的话,生境破坏发生在取样面积;(2)样本不注重收集活的生物体,而是无生命的肌肤,让社会动态的轨迹不会受到影响;(3)鉴定属,和常的物种,是比较容易得到适当的密钥和描述3;(4)收集,处理,以及确定用样品是有效和经济相比传统采样方法3,8,9;(5)累计蜕皮表示源自类群广泛微生境10;(6)该方法在几乎所有的水生环境是适用的,包括溪流和河流,河口,湖泊ES,池塘,岩石池和湿地;和(7)SFPE说不定是生态系统健康更敏感的指标,因为它们代表了已完成所有的未成熟阶段并成功成为大人11个人。

该SFPE方法不收集有关摇蚊社区信息的新途径。利用SFPE首次由蒂内曼12在20世纪初提出。各种研究已经使用了SFPE分类调查( ,13-15),生物多样性和生态研究( 7,16-19),以及生物评估( ,20-22)。此外,一些研究已经解决了样本设计,样本大小,和所需的用于实现种或属( 例如,8,9,23)的各种检测水平样本的事件数的不同方面。这些研究表明,种或属的相对高百分比可以与中等避免费劲地检测T或与费用来样加工有关。例如,安德森和Ferrington 8确定,基于100计数子样本, 第三届 1/3更少的时间被要求挑选相比,浸净样品SFPE样本。另一项研究确定了3-4 SFPE样品可以进行排序,并确定了每一个浸净样品,并且样品SFPE比浸净样品更有效的检测,在物种的物种丰富度增加了3。例如,在站点物种丰富度15-16种值,平均倾斜度,净效率为45.7%,而SFPE样品分别为97.8%,有效率3。

重要的是,SFPE方法已经标准化,在欧洲联盟24(称为摇蚊蛹蜕皮技术(CPET))和北美25生态评估,但该方法尚未被详细描述。所述SFPE方法的一个应用是通过Ferrington, 等人描述 <s达> 3;然而,该研究的主要焦点是评价SFPE方法的有效性,有效性和经济性。这项工作的目的是描述所有步骤SFPE方法的细节,包括样品采集,实验室处理,滑动安装,并属鉴定。目标受众包括研究生,研究人员和专业人士有意拓展传统的水质监测工作到学业。

Protocol

1.准备的现场采集耗材确定应基于该研究设计来收集,并获得一个样品罐( 例如,60ml)中的每个样品SFPE样本的数目。 准备两个日期和位置标签每个样品罐。将一个在里面,并加盖对方的罐子外面。确保每个日期和地点标签包括以下信息:国家,州,县,市,水体,GPS坐标,日期和人(S)的名字收集样品。 收集其他特殊材料和设备(见表具体材料/设备)。 <p …

Representative Results

图1示出的摇蚊生命周期;不成熟的阶段(卵,幼虫,蛹)通常发生在,或与水环境密切相关。当幼虫生命阶段完成后,幼虫构建了一个筒状的住房和丝质分泌物附着于周围的基底和化蛹发生。一旦显影成人已经成熟,蛹释放本身和游到水中,其中成人可以从蛹蜕皮出现的表面上。的蜕皮充满空气,并凭借角质层的外蜡质层的,但它仍然漂浮在水面上,直到细菌开始分解蜡层。 <p cla…

Discussion

成功SFPE样品收集,挑选,整理,滑动安装,并识别最关键的步骤是:(1)野外采集( 图2A)在定位的研究区域内高SFPE聚集区; (2)缓慢地扫描所述培养皿中的样品采摘检测所有SFPE的内容; (3)制定必要的手工灵巧滑动安装( 图4A)在解剖从腹部的头胸部; (4)承认摇蚊蛹蜕关键形态学特征正确识别到属。

检测的高SFPE积累( 图2A)的区…

Disclosures

The authors have nothing to disclose.

Acknowledgements

资金用于撰写和发布本文通过多种赠款和合同昆虫学系的摇蚊研究小组(LC Ferrington,小,PI)在明尼苏达大学提供了依据。 感谢弥敦道罗伯茨分享作为数字照片四野在视频中与此相关的手稿。

Materials

Ethanol Fisher Scientific S25309B  70-95%
Plastic wash bottles Fisher Scientific 0340923B
Sample jar Fisher Scientific 0333510B Glass or plastic, 60-mL recommended
Testing sieve Advantech 120SS12F 125-micron mesh size
Larval tray BioQuip 5524 White
Stereo microscope
Glass shell vials Fisher Scientific 0333926B 1-dram size
Plastic dropper Thermo Scientific 1371110 30 to 35 drops/mL
Fine forceps BioQuip 4524 #5
Petri dish Carolina 741158 Glass or plastic
Multi-well plate Thermo Scientific 144530 Glass or plastic
Glass microslides Thermo Scientific 3010002 3 x 1 in.
Glass cover slips Thermo Scientific 12-519-21G Circular or square
Euparal mounting medium  BioQuip 6372B
Pigma pen BioQuip 1154F Black
Probe BioQuip 4751
Kimwipes Kimberly-Clark Professional™ 34120

References

  1. Southerland, M. T., Stribling, J. B., Davis, W. S., Simon, T. P. . Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. , 81-96 (1995).
  2. Merritt, R. W., Cummins, K. W., Resh, V. H., Batzer, D. P., Merritt, R. W., Cummins, K. W., Berg, M. B. . An Introduction to the Aquatic Insects of North America. , 15-37 (2008).
  3. Ferrington, L. C., et al. . Sediment and Stream Water Quality in a Changing Environment: Trends and Explanation. , 181-190 (1991).
  4. Ferrington, L. C., Balian, E. V., Lévêque, C., Segers, H., Martens, K. . Freshwater Animal Diversity Assessment in Hydrobiology. , 447-455 (2008).
  5. Ferrington, L. C., Berg, M. B., Coffman, W. P., Merritt, R. W., Cummins, K. W., Berg, M. B. . An Introduction to the Aquatic Insects of North America. , 847-989 (2008).
  6. Armitage, P. D., Cranston, P. S., Pinder, L. C. V. . The Chironomidae: Biology and Ecology of Non-Biting Midges. 572, (1995).
  7. Coffman, W. P. Energy Flow in a Woodland Stream Ecosystem: II. The Taxonomic Composition of the Chironomidae as Determined by the Collection of Pupal Exuviae. Archiv fur Hydrobiologie. 71, 281-322 (1973).
  8. Anderson, A. M., Ferrington, L. C., Ekrem, T., Stur, E., Aagaard, K. . Proceedings of 18th International Symposium on Chironomidae on Fauna norvegica. 31, (2011).
  9. Bouchard, R. W., Ferrington, L. C. The Effects of Subsampling and Sampling Frequency on the Use of Surface-Floating Pupal Exuviae to Measure Chironomidae (Diptera) Communities in Wadeable Temperate Streams. Environmental Monitoring and Assessment. 181, 205-223 (2011).
  10. Wilson, R. S. Monitoring the Effect of Sewage Effluent on the Oxford Canal Using Chironomid Pupal Exuviae. Water and Environment Journal. 8, 171-182 (1994).
  11. Wentsel, R., McIntosh, A., McCafferty, W. P. Emergence of the Midge Chironomus tentans when Exposed to Heavy Metal Contaminated Sediment. Hydrobiologia. 57, 195-196 (1978).
  12. Thienemann, A. Das Sammeln von Puppenhäuten der Chironomiden. Eine Bitte um Mitarbeit. Archiv fur Hydrobiologie. 6, 213-214 (1910).
  13. Anderson, A. M., Kranzfelder, P., Egan, A. T., Ferrington, L. C. Survey of Neotropical Chironomidae (Diptera) on San Salvador Island, Bahamas. Florida Entomologist. 97, 304-308 (2014).
  14. Coffman, W. P., de la Rosa, C. Taxonomic Composition and Temporal Organization of Tropical and Temperate Assemblages of Lotic Chironomidae. Journal of the Kansas Entomological Society. 71, 388-406 (1998).
  15. Brundin, L. Transantarctic Relationships and their Significance, as Evidenced by Chironomid Midges. With a Monograph of the Subfamilies Podonominae and Aphroteniinae and the Austral Heptagyiae. Svenska Vetenskapsakademiens Handlingar. 11, 1-472 (1966).
  16. Anderson, A. M., Ferrington, L. C. Resistance and Resilience of Winter-Emerging Chironomidae (Diptera) to a Flood Event: Implications for Minnesota Trout Streams. Hydrobiologia. 707, 59-71 (2012).
  17. Ferrington, L. C., Anderson, T. . Contributions to the Systematics and Ecology of Aquatic Diptera-A Tribute to Ole A. Saether. , 99-105 (2007).
  18. Bouchard, R. W., Ferrington, L. C. Winter Growth, Development, and Emergence of Diamesa mendotae (Diptera: Chironomidae) in Minnesota Streams. Environmental Entomology. 38, 250-259 (2009).
  19. Hardwick, R. A., Cooper, P. D., Cranston, P. S., Humphrey, C. L., Dostine, P. L. Spatial and Temporal Distribution Pattens of Drifting Pupal Exuviae of Chironomidae (Diptera) in Streams of Tropical Northern Australia. . Freshwater Biology. 34, 569-578 (1995).
  20. Wilson, R. S., Bright, P. L. The Use of Chironomid Pupal Exuviae for Characterizing Streams. Freshwater Biology. 3, 283-302 (1973).
  21. Raunio, J., Paavola, R., Muotka, T. Effects of Emergence Phenology, Taxa Tolerances and Taxonomic Resolution on the Use of the Chironomid Pupal Exuvial Technique in River Biomonitoring. Freshwater Biology. 52, 165-176 (2007).
  22. Ruse, L. Lake Acidification Assessed using Chironomid Pupal Exuviae. Fundamental and Applied Limnology. 178, 267-286 (2011).
  23. Rufer, M. R., Ferrington, L. C. Sampling Frequency Required for Chironomid Community Resolution in Urban Lakes with Contrasting Trophic States. Boletim do Museu Municipal do Funchal (História Natural) Supplement. 13, 77-84 (2008).
  24. . . CEN. 15196, 1-13 (2006).
  25. Ferrington, L. C. Collection and Identification of Surface Floating Pupal Exuviae of Chironomidae for Use in Studies of Surface Water Quality. Standard Operating Procedure No. FW 130A. , (1987).
  26. Saither, O. A. Glossary of Chironomid Morphology Terminology (Chironomidae Diptera). Entomologica Scandinavica Supplement. 14, 51 (1980).
  27. Pinder, L. C. V., Reiss, F., Wiederholm, T. . Chironomidae of the Holarctic region. Keys and Diagnoses Part 2. Pupa. 28, 299-456 (1986).
  28. Wiederholm, T. . Chironomidae of the Holarctic region – Keys and Diagnoses, Part 2, Pupae. 28, (1989).
  29. Merritt, R. W., Webb, D. W. . An Introduction to the Aquatic Insects of North America. , (2008).
  30. Wilson, R. S., Ruse, L. P., Sutcliffe, D. W. . A Guide to the Identification of Genera of Chironomid Pupal Exuviae Occurring in Britain and Ireland (including Common Genera from Northern Europe) and Their Use in Monitoring Lotic and Lentic Fresh Waters. , (2005).
  31. Egan, A. T. . Communities in Freshwater Coastal Rock Pools of Lake Superior, with a Focus on Chironomidae (Diptera). , (2014).
  32. Raunio, J., Heino, J., Paasivirta, L. Non-Biting Midges in Biodiversity Conservation and Environmental Assessment: Findings from Boreal Freshwater Ecosystems. Ecological Indicators. 11, 1057-1064 (2011).
  33. Kavanaugh, R. G., Egan, A. T., Ferrington, L. C. Factors affecting decomposition rates of chironomid (Diptera) pupal exuviae. Chironomus: Newsletter on Chironomidae Research. 27, 16-24 (2014).
  34. Anderson, A. M., Stur, E., Ekrem, T. Molecular and Morphological Methods Reveal Cryptic Diversity and Three New Species of Nearctic Micropsectra (Diptera: Chironomidae). Freshwater Science. 32, 892-921 (2013).
  35. Ekrem, T., Willassen, E. Exploring Tanytarsini Relationships (Diptera: Chironomidae) using Mitochondrial COII Gene Sequences. Insect Systematics & Evolution. 35, 263-276 (2004).
  36. Ekrem, T., Willassen, E., Stur, E. A Comprehensive DNA Sequence Library is Essential for Identification with DNA Barcodes. Molecular Phylogenetics and Evolution. 43, 530-542 (2007).

Play Video

Cite This Article
Kranzfelder, P., Anderson, A. M., Egan, A. T., Mazack, J. E., Bouchard, Jr., R. W., Rufer, M. M., Ferrington, Jr., L. C. Use of Chironomidae (Diptera) Surface-Floating Pupal Exuviae as a Rapid Bioassessment Protocol for Water Bodies. J. Vis. Exp. (101), e52558, doi:10.3791/52558 (2015).

View Video