Diagnosis of Eimeria infection in chickens remains demanding. Parasite morphology- and host pathology-led approaches are commonly inconclusive, while molecular approaches based on PCR have proven demanding in cost and expertise. The aim of this protocol is to establish loop-mediated isothermal amplification (LAMP) as a straightforward molecular diagnostic for eimerian infection.
Eimeria species parasites, protozoa which cause the enteric disease coccidiosis, pose a serious threat to the production and welfare of chickens. In the absence of effective control clinical coccidiosis can be devastating. Resistance to the chemoprophylactics frequently used to control Eimeria is common and sub-clinical infection is widespread, influencing feed conversion ratios and susceptibility to other pathogens such as Clostridium perfringens. Despite the availability of polymerase chain reaction (PCR)-based tools, diagnosis of Eimeria infection still relies almost entirely on traditional approaches such as lesion scoring and oocyst morphology, but neither is straightforward. Limitations of the existing molecular tools include the requirement for specialist equipment and difficulties accessing DNA as template. In response a simple field DNA preparation protocol and a panel of species-specific loop-mediated isothermal amplification (LAMP) assays have been developed for the seven Eimeria recognised to infect the chicken. We now provide a detailed protocol describing the preparation of genomic DNA from intestinal tissue collected post-mortem, followed by setup and readout of the LAMP assays. Eimeria species-specific LAMP can be used to monitor parasite occurrence, assessing the efficacy of a farm’s anticoccidial strategy, and to diagnose sub-clinical infection or clinical disease with particular value when expert surveillance is unavailable.
La produzione globale di pollo è aumentato di dieci volte nel corso degli ultimi 50 anni con il mondo in via di sviluppo che ospita quasi quattro volte l'espansione testimoniata nel mondo sviluppato (www.faostat.org) . Come la rilevanza della produzione di pollo per la sicurezza alimentare mondiale è cresciuta così ha anche il profilo di agenti patogeni che possono causare malattie gravi nei polli. Un primo esempio sono le Eimeria, protozoi parassiti onnipresenti che possono causare la malattia enterica coccidiosi 1. Ovunque i polli sono allevati uno o più Eimeria è probabilmente comune 2-4. Nel mondo sviluppato Eimeria sono controllate principalmente da chemioprofilassi, utilizzando programmi di trasporto o di rotazione per ridurre al minimo l'impatto della resistenza 5. I vaccini vivi sono utilizzati anche in sistemi in cui il valore Bird è sufficiente a giustificare il costo (ad esempio, riproduttori, strati e alcuni polli da carne 5). Come Result di queste misure coccidiosi clinica è spesso ben controllato, anche se l'infezione subclinica è comune 5. Nel vaccinazione mondo in via di sviluppo è rara e l'applicazione di droga spesso meno bene informato. Di conseguenza coccidiosis sub-clinica e clinica è più comune ed esercita un impatto economico significativo 3.
La diagnosi di infezione eimerian ha sempre utilizzato lesione segnando post mortem, anche se il sistema di punteggio più usato anche gli autori hanno commentato che per alcune specie "sembra dubbio che tale procedura dovrebbe essere tentata in qualsiasi ma moderatamente gravi infezioni" 6. Prove supplementari possono essere raccolte attraverso il rilevamento microscopico dello stadio di oocisti lifecycle resistente ambientale in campioni di feci o del disordine, anche se la sovrapposizione morfologia può confondere tutti, ma l'esperto 6,7. Alternative molecolari con reazione a catena della polimerasi (PCR), amplificatio casualen di PCR DNA polimorfico (RAPD-PCR) e tecnologie di PCR quantitativa sono stati disponibili per un massimo di 20 anni 8-10, ma fino ad oggi non sono riusciti a diventare popolare. Spesa relativa e la necessità di apparecchiature di laboratorio specializzato o di trasformazione hanno limitato la loro adozione, nonostante la natura spesso soggettiva e tecnicamente impegnativo del pathology- vecchio e basato microscopia avvicina 10,11. Tali limiti possono essere esagerati in molte delle regioni più povere del mondo, come il Sud-est asiatico, dove l'impatto della coccidiosi sulla povertà può essere proporzionalmente maggiore 12. In risposta vi è una chiara domanda di nuove semplice e sensibile, ma redditizio, Eimeria specie-specifici saggi diagnostici.
Loop-mediata amplificazione isotermica (LAMP) è un facile da preparare DNA polimerasi tecnica-driven che è in grado di amplificare grandi quantità di DNA. Ancora più importante, LAMP utilizza un polymera DNA Bstse invece della DNA polimerasi Taq comunemente usato in PCR, che facilita l'amplificazione del DNA in una singola temperatura costante, senza la necessità di cicli termici 13,14. LAMP può essere suscettibile di applicazione anche in laboratorio più rudimentale o nel campo. Caratterizzato da resistenza rispetto a molti inibitori della PCR, elevata sensibilità e specificità, saggi LAMP sono stati sviluppati per una vasta gamma di agenti patogeni, tra cui virus della malattia infettiva della borsa, Clostridium perfringens e Cryptosporidium 15-17. In risposta alla domanda di nuovi strumenti diagnostici di costo-efficacia Eimeria specie specifiche di un gruppo di saggi LAMP specifiche per ciascuno dei sette Eimeria che infettano i polli è stato sviluppato 18. Le domande per i nuovi test comprendono il monitoraggio dei parassiti occorrenza, di particolare valore dato l'associazione di specie come Eimeria maxima o Eimeria necatrix con scarsa pe economicarformance 3,4. Altre applicazioni includono valutare l'efficacia della strategia anticoccidial di una fattoria, diagnosi di infezione subclinica o malattia clinica e valutazione del rischio rappresentato da Eimeria ad una fattoria.
The Eimeria species-specific LAMP assays described in this paper offer a new diagnostic tool kit in support of effective control of coccidia and the disease coccidiosis. The outcomes of eimerian infection can include severe economic loss as well as seriously compromised bird welfare and increased susceptibility to colonisation by zoonotic pathogens21. Opportunities to monitor flocks for the occurrence of some, or all Eimeria species can provide early warning of a breakdown in anticoccidial control efficacy. Key advantages of LAMP include robust target specificity, resulting from the requirement for six different DNA sequence targets, as well as high sensitivity, boosted by the inclusion of loop primers13, although the qualitative, not quantitative nature of LAMP may be considered a limitation. It is not currently possible to discriminate low level parasite escape from routine chemoprophylaxis or live vaccine replication from unchecked eimerian replication. Nonetheless, the technical ease of the protocol and definitive readout offers considerable improvement over the existing specialist and frequently subjective pathology- and morphology-led approaches6,7. Each assay may be completed at a cost of ~£0.75 per sample, independent of labour and equipment set up expenses. Thus, LAMP assays are also more cost effective than other molecular diagnostics such as PCR, since they require an isothermal incubation with no need for specialist equipment.
For many years access to Eimeria genomic DNA as template has limited the development and application of molecular field diagnostics. The oocyst is the most readily accessible phase of the eimerian lifecycle, but routine DNA extraction requires laboratory facilities22. Other, more labile intestinal lifecycle stages require purification prior to DNA preparation to prevent PCR inhibition and a consequent loss of sensitivity23,24. The ability to extract eimerian DNA of a quality suitable for LAMP using equipment no more specialised than a microcentrifuge and a water bath, supplemented by inhibitor adsorption using chelex resin, now promotes the wider use of molecular biology in eimerian diagnostics. Intriguingly, the reported detection of quantitative PCR-measurable Eimeria DNA in intestinal tissue 20 days after the initiation of parasite infection, 11 days after the last detectable oocyst output, raises the suggestion that LAMP may be used to detect resolved parasite exposure as well as ongoing infection, even after any visible lesions may have been resolved25.
The relatively low cost and low technical requirements of LAMP Eimeria diagnostics can promote their application in the developing world where other more established approaches may not be available or appropriate. For this to be applicable each assay must be capable of detecting all strains which may be circulating within each region. While understanding of the genetic diversity prevailing among Eimeria species is limited26, the use of target sequences previously validated for use in quantitative PCR with strains from Africa, Asia, Europe and South America provides some evidence of conservation, supporting the utility of these LAMP assays around the world10.
The authors have nothing to disclose.
The work carried out in this study was supported in part by the Royal Veterinary College through the student research projects fund, as well as the Biotechnology and Biological Sciences Research Council and the Department for International Development (grant number BB/H009337/2). This manuscript has been assigned the reference PPB_00795 by the RVC.
Name | Company | Catalogue number | Comments |
RNAlater | Ambion | AM7024 | |
Ethanol | VWR Chemicals | 20821.321 | Caution, highly flammable |
100 x Tris-EDTA (TE) buffer concentrate | Sigma-Aldrich | T9285 | |
Chelex 100 resin | Bio-Rad | 142-1253 | |
Molecular grade water | Invitrogen | 10977035 | |
E. acervulina F3 | Sigma-Aldrich | VC00021 | *CCTAACATTTCGCTTCACGGAC |
E. acervulina B3 | Sigma-Aldrich | VC00021 | *ATGAGCAAGTGGAACACCTTG |
E. acervulina FIP | Sigma-Aldrich | VC00021 | *AGAGCACAGTGGCAGTGC-AGCAGACAGCATGGCTTACCT |
E. acervulina BIP | Sigma-Aldrich | VC00021 | *GAAGACCCTCTGAAGAACGGA-CCTTCTCACCGCTTACCGG |
E. acervulina LB | Sigma-Aldrich | VC00021 | *TAAGGTTACACCCGTGGAGG |
E. acervulina LF | Sigma-Aldrich | VC00021 | *GCCATGCACAAAGCGACTT |
E. brunetti F3 | Sigma-Aldrich | VC00021 | *GGCCATCAAGTTCCATGAGC |
E. brunetti B3 | Sigma-Aldrich | VC00021 | *TCAACCTCCTGAGTGTGGTT |
E. brunetti FIP | Sigma-Aldrich | VC00021 | *GAAAATGCCTTCGTAGCTGCT-GCTGGGTACGGAGCGTCTT |
E. brunetti BIP | Sigma-Aldrich | VC00021 | *TACTTCCTAGGATCCATCCTCGC-AGTTTCGCTGCCGCCTC |
E. brunetti LB | Sigma-Aldrich | VC00021 | *GAAACGCTCGAACATGGC |
E. brunetti LF | Sigma-Aldrich | VC00021 | *CTTCTCCACAGACCCAGAGGT |
E. maxima F3 | Sigma-Aldrich | VC00021 | *ACTACGGAAAAGTGCGTAGCT |
E. maxima B3 | Sigma-Aldrich | VC00021 | *CCTTCCTCCCTTCTGAAAACTG |
E. maxima FIP | Sigma-Aldrich | VC00021 | *GAGTCACTGCTGATGTACCAAA AG-GAACTATGCCGCTTTCCCCTG |
E. maxima BIP | Sigma-Aldrich | VC00021 | *AGAATGCGGATTTGTTAGCAGC-AGCAAGTCCAAGGTGTGTGTA |
E. maxima LB | Sigma-Aldrich | VC00021 | *CAAGCCTACGCGGACATC |
E. maxima LF | Sigma-Aldrich | VC00021 | *TTATGCAGCTGGGTCAACG |
E. mitis F3 | Sigma-Aldrich | VC00021 | *ACGATAGCCAAGACACGTAAGG |
E. mitis B3 | Sigma-Aldrich | VC00021 | *CCCCGTGATAAGAGTAGGAACA |
E. mitis FIP | Sigma-Aldrich | VC00021 | *CGCGGGTCGTGAGATTTAAATT AT-GGAAGATCAGGACGGGCACT |
E. mitis BIP | Sigma-Aldrich | VC00021 | *GTTTCAGTTGATGAACAAGCGA GA-TGCGCCTCTAGAATCAAGACG |
E. mitis LB | Sigma-Aldrich | VC00021 | *TCCATGCATCCCCTTGTT |
E. mitis LF | Sigma-Aldrich | VC00021 | *CGTGGGCACAGATTGATTC |
E. necatrix F3 | Sigma-Aldrich | VC00021 | *TGGCTTTCCCGCGTACC |
E. necatrix B3 | Sigma-Aldrich | VC00021 | *CGGCCCAACACAAAGACTG |
E. necatrix FIP | Sigma-Aldrich | VC00021 | *CGCTTGAGTTTTAAGCTATGCA CA-GACCCAAGCAGCTCACCAA |
E. necatrix BIP | Sigma-Aldrich | VC00021 | *CGCCATGCCATTCAATGAACG-*GAGGCATACCGGCGTTGTC |
E. necatrix LB | Sigma-Aldrich | VC00021 | *GTCTGTAACTTGGGACGTTGT |
E. necatrix LF | Sigma-Aldrich | VC00021 | *GAACAGCCGGAGCCTCTC |
E. praecox F3 | Sigma-Aldrich | VC00021 | *GCCCTTGTATGTTGCTGTTTCT |
E. praecox B3 | Sigma-Aldrich | VC00021 | *GCGCACGAATCTGAATCACAC |
E. praecox FIP | Sigma-Aldrich | VC00021 | *ATCTCCTCAAAGACTTTCGCGT A-GCGCTTGGCTATATCCATAGG |
E. praecox BIP | Sigma-Aldrich | VC00021 | *GCTCTCGTGGCATACTTGC-GCCAGGAGCCACTGATTGT |
E. praecox LB | Sigma-Aldrich | VC00021 | *GAATAGCATTGCCAGGTGG |
E. praecox LF | Sigma-Aldrich | VC00021 | *GTCCACTGTCATTAATATTGC TGC |
E. tenella F3 | Sigma-Aldrich | VC00021 | *GCTTGTGAAGGTCAGCGTG |
E. tenella B3 | Sigma-Aldrich | VC00021 | *GCTGAGTCCATACGTACTTCCT |
E. tenella FIP | Sigma-Aldrich | VC00021 | *GCCACTGCTATGGAAAGTCAC AC-CATAACTGGCATGCAGGGGT |
E. tenella BIP | Sigma-Aldrich | VC00021 | *GTTTGGCCCGAAAGTTGTGAA GA-CGTCAGAAATTGCTGCCCAAT |
E. tenella LB | Sigma-Aldrich | VC00021 | *CGCATGTGCAGTTGAAGACA |
E. tenella LF | Sigma-Aldrich | VC00021 | *CCAAATGTATCTGCTAGTTATA TTAACAAG |
10 x ThermoPol reaction buffer | New England Biolabs | B9004S | |
MgSO4 | Sigma-Aldrich | M7506 | |
dNTPs | Promega | U1330 | |
Betaine solution (5 M) | Sigma-Aldrich | B0300 | |
Bst polymerase | New England Biolabs | M0275S | |
Hydroxynaphthol blue | Sigma-Aldrich | 33936 | Dissolved in molecular grade water. |
UltraPure agarose | Invitrogen | 16500-500 | |
10 x Tris/Borate/EDTA (TBE) buffer | Invitrogen | AM9863 | |
Blue/Orange DNA loading dye (x6) | Promega | G1881 | |
GeneRuler 1Kb DNA ladder | Thermo Scientific | SM0313 | |
SafeView nucleic acid stain | NBS Biologicals | NBS-SV |