Here we present protocols that offer a flexible and strategic foundation for virally manipulating oligodendrocyte precursor cells to overexpress proteins of interest in order to specifically interrogate their role in oligodendrocytes via the in vitro model of central nervous system myelination.
Myelination is a complex process that involves both neurons and the myelin forming glial cells, oligodendrocytes in the central nervous system (CNS) and Schwann cells in the peripheral nervous system (PNS). We use an in vitro myelination assay, an established model for studying CNS myelination in vitro. To do this, oligodendrocyte precursor cells (OPCs) are added to the purified primary rodent dorsal root ganglion (DRG) neurons to form myelinating co-cultures. In order to specifically interrogate the roles that particular proteins expressed by oligodendrocytes exert upon myelination we have developed protocols that selectively transduce OPCs using the lentivirus overexpressing wild type, constitutively active or dominant negative proteins before being seeded onto the DRG neurons. This allows us to specifically interrogate the roles of these oligodendroglial proteins in regulating myelination. The protocols can also be applied in the study of other cell types, thus providing an approach that allows selective manipulation of proteins expressed by a desired cell type, such as oligodendrocytes for the targeted study of signaling and compensation mechanisms. In conclusion, combining the in vitro myelination assay with lentiviral infected OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination.
Myelination of axons is crucial for the fast and efficient transmission of action potentials in both the central and peripheral nervous systems. Specialized cells, Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system, wrap around and ensheathe axons in myelin, effectively insulating the nerve and facilitating saltatory conduction1. The process of myelination can be studied in vitro using retinal ganglion neurons2, engineered nanofibers3, or dorsal root ganglion neurons co-cultured with either Schwann cells4 or oligodendrocytes5-7. The in vitro myelination assay is an established model for studying nervous system myelination and it replicates many of the fundamental processes that occur during myelination in vivo5-8. The assay involves the coculture of purified populations of Dorsal Root Ganglion (DRG) neurons, with OPCs (for CNS myelination) or Schwann cells (for PNS myelination). Under specific conditions these myelinating cells ensheathe DRG axons in the ordered, ultra structurally verified, multi-lamellar sheet of insulating plasma membrane that express the same complement of myelin specific proteins present in vivo.
The most commonly used cell model of studying CNS myelination in vitro is the co-cultures of DRG neurons and OPCs, which have been successfully used to study the effect that exogenous factors such as the neurotrophins exert on CNS myelination in vitro5,6. Exogenous factors such as growth factors or small molecule pharmacological inhibitors have been widely used to study the role of signaling pathways in myelination using the DRG-OPC coculture model7,9. However, in the mixed co-culture settings that contain both the neurons and oligodendrocytes, it remained formally possible that either the growth factors or the pharmacological inhibitors could have exerted effects upon both the DRG neurons and oligodendrocytes (OL). This does offer the ability to specifically dissect the roles that the proteins expressed only by DRGs or oligodendroglia exerts upon myelination using this dual cell system. To unequivocally confirm that the signaling pathway in oligodendroglial directly regulates myelination, lentiviral transduction of OPCs, prior to seeding onto DRG neurons for the in vitro myelination assay, has proven to be an elegant way to overexpress both wild-type and mutant proteins, as well as knockdown expression of constitutively expressed proteins by oligodendrocytes. Thus this approach offers an avenue to specifically interrogate and manipulate signaling pathways within oligodendrocytes for studying myelination9,10.
In this paper, we report methods that we have developed to overexpress a protein of interest selectively in oligodendrocytes via a lentiviral approach for studying myelination in vitro. The technique begins with the generation of expression vectors containing the gene of interest, be it in a wild type, constitutively active or dominant negative form which are then subsequently cloned into the pENTR vector (pENTR L1-L2 pENTR4IRES2GFP). This vector (containing the gene of interest), the CMV promotor donor (pENTR L4-R1 pENTR-pDNOR-CMV) and the 2K7 lentivector are combined in an enzyme reaction to produce a 2K7 vector containing CMV promoter, the gene of interest, an internal ribosomal entry site and GFP (Figure 1). This Gateway cloned 2K7 construct combined with the PMD2.G virus envelope and the pBR8.91 virus package can be co-transfected into HEK293T cells to generate lentivirus that can subsequently be used to transduce OPCs. Once infected with the lentivirus the OPCs express a high level of the protein of interest. These OPCs can then be seeded onto DRG neuron cultures and the effect that expression of high levels of the desired protein exerts on myelination can be interrogated. The co-cultures are assessed for myelin protein expression by western blot analysis and visualized for the formation of myelinated axonal segments by immunocytochemistry.
NOTE: All animals used for this study were of mixed sex and bred at the Animal Facilities of the Department of Anatomy & Pathology and The Florey Institute of Neuroscience and Mental Health Research at the University of Melbourne. All animal procedures were approved by Animal Experimentation Ethics Committees at the University of Melbourne.
1. Cloning of 2K7 Lentivector
2. 2K7 Virus Production
NOTE: Day 1:
Vector | Concentration | Volume |
pMDG.2 | 1 µg/µl | 5 µl |
pBR8.91 | 1 µg/µl | 15 µl |
2K7 vector with GFP + gene of interest | 1 µg/µl | 22 µl |
Sterile Polyethylenimine (PEI) | 1 g/L | 500 µl |
DMEM | 2,100 µl |
3. Viral Titer Determination in HEK293T Cells
4. Isolation and Culture of DRGs (Figure 2 steps 1 & 2)
Figure 2: Schematic diagram of the in vitro myelination assay. DRG neurons are dissected from P2-3 rat pups, then purified and cultured over two weeks (1-2). OPCs are purified from P7-9 rat brains using immunopanning (3). OPCs are then infected with lentivirus and cultured for 48 hr (4). OPCs are then seeded onto DRGs, and any growth factors of interest such as BDNF are added (5). Co-cultures are then cultured for 2 weeks to allow OPCs to differentiate and myelinate the axons (6). Finally, co-cultures are either lysed for western blotting or fixed for immunocytochemistry (7).
NOTE: Day 1- 2 days prior to dissection:
5. Isolation and Culture of OPCs (Figure 2 step 3)
NOTE: Day 1- 2 days prior to dissection:
Concentration | for 250 ml | Final concentration | |
EBSS stock | 10x | 25 ml | 1x |
MgSO4 | 100 mM | 2.5 ml | 1 mM |
Glucose | 30% | 3 ml | 0.46% |
EGTA | 0.5 M | 1 ml | 2 mM |
NaHCO3 | 1 M | 6.5 ml | 26 mM |
Bring volume up to 250 ml with deionized water and filter sterilize |
6. Transducing OPCs
7. OPC Seeding for Myelinating Co-cultures (Figure 2, steps 5 and 6)
The flag-tagged extracellular signal-related kinase 1(Flag-Erk1) construct used for lentivirus production is verified by restriction enzyme digest of the constructs used, including both the 2K7 constructs and the packaging and accessory constructs required for virus production (Figure 3).
Figure 3: DNA construct verification. All DNA constructs required for lentivirus production were purified from Stbl3 bacteria and verified by restriction enzyme digest. Accessory and packaging vectors were digested with NcoI and EcoRI, as indicated, and compared to uncut plasmid (A). 2K7-GFP was digested with SpeI and SacII (A). 2K7-Flag-Erk1 DNA was verified by digestion with either SpeI or SacII alone, or by double digest (B). Banding patterns were compared to expected patterns generated from virtual digestion of the construct sequences using ApE software.
To determine the optimum dilution to use on OPCs, the Erk 1 lentivirus was titrated in HEK293T cells (Figure 4). This was done by adding a range of viral dilutions to HEK293T cells (Figures 4A, 4C, and 4D) or to OPCs (Figure 4B). Expression levels of the gene-of-interest increase with time (Figure 4D). Please click here to view a larger version of this figure.
Figure 4: Titration of Flag-Erk1 virus in HEK293T cells and OPCs. Flag-Erk1 virus was titrated in HEK293T cells (A, C, D) or OPCs (B). HEK293T cells (A) or OPCs (B) were imaged for GFP expression 48 hr after infection with Flag-Erk1 virus. HEK293T cell lysates were probed for the presence of Erk1 or total Erk1/2 after 48 hr of infection (C). HEK293T cell lysates were probed for the presence of Flag, Erk1/2 and Actin as a loading control either 48 hr or 96 hr after infection with Flag-Erk1 virus (D). These blots were all blotted and imaged together to facilitate direct comparison of expression levels at the two time points (D). Scale bar for (A) = 100 μm. Scale bar for (B) = 50 μm. Please click here to view a larger version of this figure.
Once the optimal virus dilution has been determined, purified OPCs were infected and cultured for a minimum of 48 h to allow transgene expression to reach sufficient levels, then seeded onto DRG neurons to assess their myelination potential (Figure 5). Once seeded onto DRG neurons, OPCs will differentiate into oligodendrocytes, and begin to express myelin proteins, which can be assessed by western blotting (Figure 5C). Some mature oligodendrocytes will myelinate, and this can be visualized through MBP staining (Figure 5D). Axons also need to be stained with a marker such as Neurofilament or βIII-tubulin (Figure 5D) to ensure axon density is taken into account when analyzing myelination levels.
Figure 5: OPCs were infected with Flag-Erk1 virus for 48 hr before seeding onto DRG neurons. Sister OPCs were either fixed and stained for Flag and GFP (A) or lysed and probed for Flag and Erk1 to verify expression of the virally-overexpressed protein (C). Co-cultures were fixed after 2 weeks in culture and stained for βIII-tubulin and MBP to visualize DRG axons and myelinating as well as non-myelinating oligodendrocytes (B). A myelinating oligodendrocyte is indicated by the arrow and a non-myelinating oligodendrocyte is indicated by the arrow-head (B). Parallel co-cultures were lysed and probed for the myelin proteins MBP and MAG, as well as Flag and Erk1/2 to confirm transgene expression in the co-culture (D). An increase in Erk1 levels was not visible in the co-culture due to the large quantities of DRG-derived Erk1 present in the lysates Scale bar = 20 μm.
Name | Ingredients | Notes |
TE Buffer pH 8 | 10 mM Tris pH 8 1 mM EDTA pH 8 |
Make up in deionized water. |
Polyethylenimine (PEI) | 1 g/L | Make up in deionized water, filter-sterilize and store stocks at -20 °C. |
LB Medium | 20 g Tryptone 10 g Yeast extract 10 g NaCl |
Make up to 2 L with deionized water |
50% Glycerol stock | Glycerol | Make up with an equal volume of deionized water and autoclave |
HEK 293 T cell medium | DMEM 10% Fetal Bovine Serum 1% Penicillin/streptomycin 1% L-glutamine |
|
TNE lysis buffer | 10 mM Tris pH 8 150 mM NaCl 1 mM EDTA pH 8 1% NP40 |
Dissolve NP40 in a smaller volume of deionized water first as it will crystallize on contact with water. Make up to final volume in deionized water |
M1 | MEM 10% Fetal Bovine Serum 0.4% D-glucose 2 nM L-glutamate 1% Penicillin/streptomycin |
For use with rat DRG neurons |
mM1 | Neurobasal medium 2% B27 (SM1) supplement 0.4% D-glucose 2 nM L-glutamate 1% Penicillin/streptomycin |
For use with mouse DRG neurons |
M2 | DMEM 10 mg/L Transferrin 5 mg/L Insulin 20 nM Progesterone 100 μM Putrescine 10 μM FdU 10 μM Uridine |
Make up M2 in a larger volume DMEM without FdU and uridine for use over 1-2 months. Add FdU and uridine to smaller volumes that can be finished within 2 weeks |
mM2 | mM1 10 μM FdU 10 μM Uridine |
Add FdU and uridine to smaller volumes of medium that can be finished within 2 weeks. |
10x MT-PBS pH 7.4 | 28.48 g/L (160 mM) Na2HPO4·2H2O 5.52 g/L (40 mM) NaH2PO4·H2O 87.66 g/L (1.5 M) NaCl |
Add to deionized water and adjust pH to 7.4 with 10 N NaOH |
1x MT-PBS | 10x MT-PBS Deionized water |
Dilute 10x MT-PBS 1:10 in deionized water to make 1x MT-PBS |
10x Borate buffer (1.5 M) | 18.55 g Boric acid 1x MT-PBS |
Dissolve boric acid in 150 ml 1x MT-PBS. Adjust to pH 8.56 with 10 N NaOH and bring final volume to 200 ml with 1x MT-PBS. Autoclave |
1x Borate buffer (0.15 M) | 10x Borate buffer 1x MT-PBS |
Prepare 100 ml of this buffer to dissolve PLN in. Add 10 ml of 10x borate buffer (pH 8.56) to 90 ml of 1x MT-PBS |
0.5 mg/ml Poly-L-ornithine (PLN) | 50 mg Poly-L-ornithine Hydrobromide 0.15 M Borate buffer (pH 8.56) |
Dissolve 50 mg of poly-L-ornithine hydrobromide in 100 ml of 1x borate buffer. Filter sterilize (0.22 μm filter) and store at 4 °C for up to one month |
100x Poly-D-lysine (PDL) | 5 mg Poly-D-lysine Sterile, deionized water |
100x PDL stocks can be frozen at -20 °C in single-use aliquots. Upon use, dilute to 1x in sterile, deionized water |
Papain buffer | See Table 2 | |
DNase | 12,500 U DNase I 1 ml EBSS |
On ice, dissolve the Dnase I in 1 ml of chilled EBSS. Aliquot (e.g., 300 μl/tube) and freeze overnight at -20 °C. Store at -20 °C. |
4% BSA | 8 g BSA 200 ml DPBS |
Dissolve the BSA in 150 ml DPBS at 37 °C. Adjust the pH to 7.4 with ~1 ml of 1 N NaOH. Bring the volume to 200 ml. Filter through a 0.22 μm filter to sterilize. Make 1 ml aliquots and store at -20 °C. |
10x Lo Ovomucoid | 3 g BSA 200 ml DPBS 3 g Trypsin inhibitor |
Add BSA to 150 ml DPBS and mix well. Add trypsin inhibitor and mix to dissolve. Add ~1 ml of 1 N NaOH to adjust the pH to 7.4. Bring the volume to 200 ml with DPBS. Filter-sterilize through a 0.22 μm filter. Make 1 ml aliquots and store at -20 °C. |
6x Hi Ovomucoid | 6 g BSA 200 ml DPBS 6 g trypsin inhibitor |
Add BSA to 150 ml DPBS and mix well. Add trypsin inhibitor and mix to dissolve. Add ~1 ml of 1N NaOH to adjust the pH to 7.4. Bring the volume to 200 ml with DPBS. Filter-sterilize through a 0.22 μm filter. Make 1 m aliquots and store at -20 °C. |
SATO base | See Table 3 | |
SATO media (rat) | 1% SATO base 1% Penicillin/streptomycin 1% 0.5 mg/ml Insulin 1% L-Glutamine 0.1% NAC 0.1% Biotin Make up with DMEM and filter sterilize. |
|
SATO media (mouse) | 1% SATO base 1% 0.5 mg/ml insulin 1% Penicillin/streptomycin 1% L-Glutamine 0.1% NAC 0.1% Biotin 0.1% Trace Elements B 2% B27 Make up with DMEM and filter sterilize. |
|
Insulin | 10 mg Insulin 20 ml Sterile deionzed water |
Add insulin to deionized water and add 100 μl of 1 N HCl to allow the insulin to dissolve. Mix well. Filter through a 0.22 μm filter and store at 4 °C for 4-6 weeks |
NAC (N-Acetyl-L-cysteine) | 5 mg/ml NAC DMEM |
Dissolve NAC in DMEM to make a 5 mg/ml solution, aliquot and store at -20 °C. |
d-Biotin | 50 μg/ml biotin Sterile, deionized water |
Dissolve biotin in water to make a 50 μg/ml solution, aliquot and store at -20 °C. |
CNTF (ciliary neurotrophic factor) | 10 μg/ml CNTF 0.2% BSA in DPBS |
Dilute CNTF to make a 10 μg/ml solution with sterile 0.2% BSA in DPBS. Aliquot, flash freeze in liquid nitrogen and store at -80 °C. |
PDGF (platelet derived growth factor) | 10 µg/ml PDGF 0.2% BSA in DPBS |
Dilute PDGF master stock (prepared according to manufacturer’s instructions) to 10 µg/ml with sterile 0.2% BSA in DPBS. Aliquot, flash freeze in liquid nitrogen and store at -80 °C. |
NT3 (Neurotrophin-3) | 1 µg/ml NT-3 0.2% BSA in DPBS |
Dilute NT3 master stock (prepared according to manufacturer’s instructions) to 1 µg/ml with sterile 0.2%BSA in DPBS. Aliquot, flash freeze in liquid nitrogen and store at -80 °C. |
Forskolin | 50 mg Forskolin Sterile DMSO |
Add 1 ml sterile DMSO to the 50 mg bottle of forskolin and mix well to resuspend fully. Transfer to 15 ml tube and add 11 ml sterile DMSO to reach a concentration of 4.2 mg/ml. Aliquot and store at -20 °C. |
Table 3. Stock solutions.
Myelination of axons is a crucial process for the optimal function of both the central and peripheral nervous systems of vertebrates. The generation and maintenance of myelinated axons is a complex and coordinated process involving molecular interactions between neuronal, glial (from Schwann cells or oligodendrocytes) and extra cellular matrix proteins. The significance and applicability of this protocol is that it allows manipulation of proteins in one specific cell type within the mixed co-culture settings. As multiple cell types are involved in myelination both in vivo and in the in vitro myelination assay, using blunt pharmacological tools to block the activity of particular proteins or signaling pathways cannot provide specific information about the influence that proteins exert upon myelination from either a neuronal or glial perspective, unless the protein is uniquely expressed by one cell type. Thus, the in vitro myelination assay in conjunction with the use of Lentivirus to specifically transduce OPCs allows us to interrogate the effects that oligodendroglial proteins exert upon myelination. We have successfully used 2K7 Lentivirus to overexpress particular proteins specifically in oligodendrocytes for the in vitro myelination assay in order to dissect the effect that oligodendroglial signals exert upon CNS myelination9.
To achieve reproducible results in the transduced OPC in vitro myelination assay, optimization is required for each step of the protocol from cloning through dissections and OPC seeding. It is imperative that, at the level of DNA, the pENTR vector containing the tagged gene of interest construct is sequenced and that the 2K7 DNA with the tagged gene of interest is checked by western blot for expression of the tag and the gene of interest, prior to using the DNA to generate virus. It is essential to choose either HEK293Tcells or HEK293 FT cells to generate the virus and grow under mycoplasma free environment. After producing lentivirus it is important to titrate each batch of virus to determine the optimum dilution to use on OPCs. This can be done by adding a range of viral dilutions to HEK293T cells or to OPCs. As the 2K7 construct contains both the gene-of-interest and GFP, efficacy of transduction can be assessed by expression of GFP by fluorescence microscopy and by assaying expression of the tag and the gene of interest by western blot analysis. Brighter GFP+ cells will become visible with higher virus concentrations, as it is possible for multiple viral particles to infect a single cell. Verification of the expression of GFP via fluorescence microscopy is a helpful indicator of titer of virus and expression of GFP but cannot be used as a surrogate for checking the expression of the protein of interest. It is therefore critical to verify the expression level of the protein of interest in both HEK293T cells and OPCs by western blot analysis. If the protein of interest is expressed endogenously by neurons in the co-cultures, the overexpression by OPCs/OLs may be masked when analyzing the co-culture lysate by western blot; thus it is important to either tag the protein of interest or culture the sister OPCs following seeding so expression of the protein of interest can be verified in the sister OPCs if not in the co-culture.
The quality of both DRG and OPC culture directly determines if the experiments succeeds. In the coculture settings, rat DRG neurons can be cocultured with OPCs derived from either rat or mouse. OPCs require gentle and swift handling. It is important to optimize the virus titer for OPCs as too little fails to effectively transduce the OPCs leading to low levels of expression of the protein of interest and too much virus is toxic to OPCs so there are too few cells to seed onto the neurons. Both of these sub optimal transductions may result in unanalyzable or insignificant changes in myelination or myelin protein expression. OPCs differentiate if they become over confluent and cannot be seeded after they have differentiated, thus the number of OPCs cultured and transduced needs to be optimized to local conditions. It is desirable to seed the same number of OPCs for each myelination assay allowing direct comparisons of the number of myelinated axonal segments to be compared between conditions over multiple experiments.
A potential limitation of this technique is the variability in basal myelination levels between myelination assays. Following viral transduction, the basal level of myelination is reduced, suggesting that virally infected OPCs do not myelinate as well as the naive (non-viral infected) OPCs. This can be overcome by quantifying the extent of myelination relative to the basal myelination in each assay. Thus, the empty vector that expresses only GFP must be used as an internal control. In addition to myelination, the expression of a protein of interest may also influence other aspects of OPCs such as survival, proliferation and differentiation, leading to an indirect effect on myelination. Therefore, analysis of OPC behavior such as cell viability should be undertaken in parallel to myelination assays.
The viral transduction methods described here are not limited to the study of oligodendrocyte myelination; in fact it can be generalized and applied to study other cell types such as Schwann cells, astrocytes, and neurons, while optimization may be required for individual cell type. This protocol offers great flexibility to study cell behavior such as proliferation and differentiation by selective overexpression of a protein of interest (wild type or mutant) in the desired cell type, which has particular advantages when using a mixed cell culture system. The cells that are used for transduction can be isolated from either rat or mouse (wild type or transgenic), thus allowing for the targeted study of signaling and compensation mechanisms in transgenic animals, which is usually difficult to achieve and much more time consuming than using an in vivo transgenic mouse model. Recent evidence suggest that the lentiviral-based strategy has been successfully used for cell transduction in animal models13, suggesting a strong potential of transducing oligodendroglial cells using the lentiviral approaches in vivo.
In conclusion, combining the in vitro myelination assay with Lentiviral infection of OPCs provides a strategic tool for the analysis of molecular mechanisms involved in myelination. The role of specific proteins in myelination can be interrogated and as OPCs can be isolated from rats and mice for use on rat DRG co-cultures, the lentiviral approach can also be used in combination with knockout technology of various mouse lines to interrogate mechanisms of compensation in the processes of myelination.
The authors have nothing to disclose.
This work was supported by the Australian National Health and Medical Research Council (NHMRC fellowship #454330 to JX, project grant #628761 to SM and APP1058647 to JX), Multiple Sclerosis Research Australia (MSRA #12070 to JX), the University of Melbourne Research Grant Support Scheme and Melbourne Research CI Fellowship to JX as well as Australia Postgraduate Scholarships to HP and AF. We would like to acknowledge the Operational Infrastructure Scheme of the Department of Innovation, Industry and Regional Development, Victoria Australia.
Item | Manufacturer | Catalog # | Notes |
2K7 lentivector | Kind gift from Dr Suter9 | ||
5-Fluoro-2′-deoxyuridine | Sigma-Aldrich | F0503-100mg | |
Alexa Fluor 488 Goat anti-mouse IgG | Jackson Immunoresearch | 115545205 | |
Alexa Fluor 488 goat anti-rabbit IgG (H+L) | Life Technologies | A11008 | |
Alexa Fluor 594 goat anti-mouse IgG (H+L) | Life Technologies | A11005 | |
Alexa Fluor 594 goat anti-rabbit IgG (H+L) | Life Technologies | A11012 | |
Ampicillin | Sigma-Aldrich | A9518-5G | |
B27 – NeuroCul SM1 Neuronal Supplement | Stem Cell Technologies | 5711 | |
BDNF (Human) | Peprotech | PT450021000 | |
Biotin (d-Biotin) | Sigma Aldrich | B4639 | |
Bradford Reagent | Sigma Aldrich | B6916-500ML | |
BSA | Sigma Aldrich | A4161 | |
Chloramphenicol | Sigma-Aldrich | C0378-100G | |
CNTF | Peprotech | 450-13020 | |
DAKO fluoresence mounting media | DAKO | S302380-2 | |
DMEM, High Glucose, Pyruvate, no Glutamine | Life Technologies | 10313039 | |
DNase | Sigma-Aldrich | D5025-375KU | |
DPBS | Life Technologies | 14190250 | |
DPBS, calcium, magnesium | Life Technologies | 14040182 | |
EBSS | Life Technologies | 14155063 | |
EcoRI-HF | NEB | R3101 | |
Entry vectors for promoter and gene of interest | Generate as per protocols 1-2 | ||
Fetal Bovine Serum | Sigma-Aldrich | 12003C | |
Forskolin | Sigma Aldrich | F6886-50MG | |
Glucose (D-glucose) | Sigma-Aldrich | G7528 | |
Glycerol | Chem Supply | GL010-500M | See stock solutions |
Goat Anti-Mouse IgG | Jackson ImmunoResearch | 115005003 | |
Goat Anti-Mouse IgM | Jackson ImmunoResearch | 115005020 | |
Goat Anti-Rat IgG | Jackson ImmunoResearch | 112005167 | |
Hoechst 33342 | Life Technologies | H3570 | |
Igepal | Sigma Aldrich | I3021-100ML | |
Insulin | Sigma Aldrich | I6634 | |
Kanamycin | Sigma-Aldrich | 60615 | |
Laminin | Life Technologies | 23017015 | |
LB Medium | See stock solutions | ||
LB-Agar | See stock solutions | ||
L-cysteine | Sigma-Aldrich | C-7477 | |
Leibovitz's L-15 Medium | Life Technologies | 11415064 | |
L-Glutamate | Sigma-Aldrich | G1626 | |
L-Glutamine- 200mM (100X) liquid | Life Technologies | 25030081 | |
LR Clonase II Plus enzyme | Life Technologies | 12538-120 | |
MEM, NEAA, no Glutamine | Life Technologies | 10370088 | |
Mouse α βIII Tubulin | Promega | G7121 | |
Mouse αMBP (monoclonal) | Millipore | MAB381 | |
Na pyruvate | Life Technologies | 11360-070 | |
NAC | Sigma Aldrich | A8199 | |
NcoI-HF | NEB | R3193S | |
NEBuffer 4 | NEB | B7004S | |
Neurobasal medium | Life Technologies | 21103049 | |
NGF (mouse) | Alomone Labs | N-100 | |
NT-3 | Peprotech | 450-03 | |
O1 antibody – Mouse anti-O1 | Millipore | MAB344 | Alternative if O1 hybridoma cells are unavailable |
O1 hybridoma cells | Conditioned medium containing anti-O1 antibody to be used for immunopanning | ||
O4 antibody – Mouse anti-O4 | Millipore | MAB345 | Alternative if O4 hybridoma cells are unavailable |
O4 hybridoma cells | Conditioned medium containing anti-O4 antibody to be used for immunopanning | ||
Competent Cells | Life Technologies | A10460 | |
One Shot Stbl competent cells | Life Technologies | C7373-03 | |
Papain Suspension | Worthington/Cooper | LS003126 | |
pBR8.91 | Kind gift from Dr Denham10 | ||
PDGF-AA (Human) | Peprotech | PT10013A500 | |
Penicillin- Streptomycin 100X solution | Life Technologies | 15140122 | |
pENTRY4IRES2GFP | Invitrogen | 11818-010 | |
pMD2.G | Addgene | 12259 | |
Poly-D-lysine | Sigma | P6407-5MG | |
Polyethylenimine (PEI) | Sigma-Aldrich | 408727-100ML | |
Poly-L-ornithine | Sigma Aldrich | P3655 | |
Progesterone | Sigma Aldrich | P8783 | |
Protease inhibitor tablet (Complete mini) | Roche | 11836153001 | |
Proteinase K | Supplied with Clonase enzyme | ||
Putrescine | Sigma Aldrich | P-5780 | |
Rabbit α neurofilament | Millipore | AB1987 | |
Rabbit αMBP (polyclonal) | Millipore | AB980 | |
Ran2 hybridoma cells | ATCC | TIB-119 | Conditioned medium containing anti-Ran2 antibody to be used for immunopanning |
Rat anti CD140A/PDGFRa antibody | BD Pharmingen | 558774 | |
SacII | NEB | R0157 | |
SOC medium | Supplied with competent bacteria | ||
Sodium selenite | Sigma Aldrich | S5261 | |
Spe I | NEB | R0133S | |
T4 DNA Ligase | NEB | M0202S | |
T4 DNA Ligase Buffer | NEB | B0202S | |
TE buffer pH8 | See stock solutions | ||
TNE lysis buffer | |||
Trace Elements B | Cellgro | 99-175-CI | |
Transferrin (apo-Transferrin human) | Sigma-Aldrich | T1147 | |
Triton X-100 | Sigma-Aldrich | T9284 | |
Trypsin | Sigma-Aldrich | T9201-1G | |
Trypsin Inhibitor From Chicken Egg White | Roche | 10109878001 | |
Trypsin-EDTA (1X), phenol red (0.05%) | Life Technologies | 25300-054 | |
Unconjugated Griffonia Simplicifolia Lectin BSL-1 | Vector laboratories | L-1100 | |
Uridine | Sigma-Aldrich | U3003-5G |