Summary

植物与放射性示踪剂测量矿质营养和毒物的通量

Published: August 22, 2014
doi:

Summary

In planta measurement of nutrient and toxicant fluxes is essential to the study of plant nutrition and toxicity. Here, we cover radiotracer protocols for influx and efflux determination in intact plant roots, using potassium (K+) and ammonia/ammonium (NH3/NH4+) fluxes as examples. Advantages and limitations of such techniques are discussed.

Abstract

Unidirectional influx and efflux of nutrients and toxicants, and their resultant net fluxes, are central to the nutrition and toxicology of plants. Radioisotope tracing is a major technique used to measure such fluxes, both within plants, and between plants and their environments. Flux data obtained with radiotracer protocols can help elucidate the capacity, mechanism, regulation, and energetics of transport systems for specific mineral nutrients or toxicants, and can provide insight into compartmentation and turnover rates of subcellular mineral and metabolite pools. Here, we describe two major radioisotope protocols used in plant biology: direct influx (DI) and compartmental analysis by tracer efflux (CATE). We focus on flux measurement of potassium (K+) as a nutrient, and ammonia/ammonium (NH3/NH4+) as a toxicant, in intact seedlings of the model species barley (Hordeum vulgare L.). These protocols can be readily adapted to other experimental systems (e.g., different species, excised plant material, and other nutrients/toxicants). Advantages and limitations of these protocols are discussed.

Introduction

营养物质和有毒物质的吸收和分布强烈地影响植物生长。因此,底层传输过程对调查构成的植物生物学和研究农业科学1,2的一个主要领域,特别是在营养优化和环境压力的环境中( 例如 ,盐胁迫,铵毒性)。对于通量植物的测量方法中,最主要是利用放射性同位素示踪物,这是显著在20世纪50年代开发的。( 例如 ,3),一直持续到今天被广泛使用。其他方法,如养分耗竭的从根介质和/或积累在组织中,使用的离子选择性微电极的振动测量,如MIFE(微电极的离子通量的估计)和SIET(扫描离子选择性电极法),并使用离子选择性荧光染料,也被广泛应用,但在他们的检测净感能力是有限XES( ,流入和流出之间的差异)。使用放射性同位素的,另一方面,允许研究者的独特能力来分离和量化单向通量,这可以被用来解决动力学参数( 例如 ,K M和V max)和洞察能力,热力学,机制的运输系统和调节。与放射性示踪剂制成单向磁通测量条件下在相反的方向上的磁通量是高下特别有用的,并且细胞内池的周转迅速4。此外,放射性示踪方法允许较高的底物浓度下进行测量时,与许多其它的技术(参见“讨论”,下同),因为所跟踪的同位素是针对相同的元件的另一同位素背景观察。

这里,我们提供的单向和n中的放射性同位素的测量的详细步骤矿质营养等通量和毒物的完整植株。重点是对钾(K +)通量测量,植物大量营养5,和氨/铵制成(NH 3 / NH 4 +),另一个常量营养素是,然而,中毒性时在高浓度下( 例如本,1 10毫米)2。我们将用放射性同位素42的K +(2 = 12.36小时)和13 NH13分之3NH 4 +(T 2 = 9.98分钟),分别在该模型系统中的大麦的完整的苗( 大麦 Ļ ),在两个关键协议的描述:通过示踪剂流出(CATE)直接流入(DI)和室分析。我们应该注意到,从本文简单介绍了需要执行的每个协议的步骤开始。每种技术在适当的时候,提供计算和理论的简要说明,但详细的论述,的背景和理论能够在这个问题4,6-9几个关键物品被发现。重要的是,这些协议大致上可转移到磁通的其他营养素/毒物分析( 例如 ,24的Na +,22的Na +,86 Rb的+,13 NO 3 – )和其它植物物种的,尽管有一些需要说明的(参见下文) 。我们还强调,放射性物质工作的所有研究者必须在通过自己的机构的电离辐射安全监管机构设置许可工作的重要性。

Protocol

1,植物文化和准备大麦种植水培苗7天的气候控制生长室(详见10)。 注意:要考虑审查的植物在不同的发育阶段,因为营养需求会随着年龄的变化是很重要的。 前一天的实验,捆绑了几个苗在一起,使一个单一的重复(每包3植物的DI,每束6植物CATE)。丛苗通过包装有2厘米件聚乙烯管的周围芽的基部,并确保管道用胶带来创建一个“围脖”。 注:每捆植物?…

Representative Results

图1示出了使用DI技术(13 N)中的等温线,用于NH 3的流入,在高生长完好大麦幼苗的根部(10毫米)的NH 4 +,和任一低(0.02毫摩尔)或高(5毫)K +。的等温线显示米氏动力学时NH 3通量被绘制为外部的NH 3浓度([NH 3]分机号码 ;可以通过改变调节溶液的pH 13)的函数。 NH 3通量分别为显著更高的低K +</su…

Discussion

这表现在上面的例子中,放射性示踪方法是一个功能强大的测量营养素和有毒物质在植物中的单向磁通的装置, 图1示出的NH 3流入可超过225微摩尔克-1小时-1,这也许是达到最高善意的跨膜通量曾报道在植物中的系统13,但是,如果测定仅净通量这个磁通量的大小将是不可见的。这是因为,NH 3的大流出发生在同一时间涌入,在徒劳…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Council of Canada (NSERC), the Canada Research Chair (CRC) program, and the Canadian Foundation for Innovation (CFI).

Materials

Name of Material/ Equipment Company Catalog Number Comments/Description
Gamma counter Perkin Elmer Model: Wallac 1480 Wizard 3"
Geiger-Müller counter Ludlum Measurements Inc. Model 3 survey meter
400-mL glass beakers VWR 89000-206 For pre-absorption, absorption, and desorption solutions
Glass funnel VWR 89000-466 For efflux funnel
Large tubing VWR 529297 For efflux funnel
Medium tubing VWR 684783 For bundling
Small tubing VWR 63013-541 For aeration
Aeration manifold Penn Plax Air Tech vat 5.5 To control/distribute pressurized air into solutions
Glass scintillation vials VWR 66022-128 For gamma counting
Glass centrifuge tubes VWR 47729-576 For spin-drying root samples
Kimwipes VWR 470173-504 For spin-drying root samples
Dissecting scissors VWR 470001-828
Forceps VWR 470005-496
Low-speed clinical centrifuge International Equipment Co. 76466M-4 For spin-drying root samples
1-mL pipette Gilson F144493
10-mL pipette Gilson F144494
1-mL pipette tips VWR 89079-470
10-mL pipette tips VWR 89087-532
Analytical balance Mettler toledo PB403-S/FACT

References

  1. Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., Britto, D. T. Sodium as nutrient and toxicant. Plant Soil. 369, 1-23 (2013).
  2. Britto, D. T., Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J. Plant Physiol. 159, 567-584 (2002).
  3. Epstein, E. Mechanism of ion absorption by roots. Nature. 171, 83-84 (1953).
  4. Britto, D. T., Kronzucker, H. J. Can unidirectional influx be measured in higher plants? A mathematical approach using parameters from efflux analysis. New Phytol. 150, 37-47 (2001).
  5. Britto, D. T., Kronzucker, H. J. Cellular mechanisms of potassium transport in plants. Physiol. Plant. 133, 637-650 (2008).
  6. Walker, N. A., Pitman, M. G., Lüttge, U., >Pitman, M. .. G. Measurement of fluxes across membranes. Encyclopedia of plant physiology. 2 Part A, (1976).
  7. Kronzucker, H. J., Siddiqi, M. Y., Glass, A. D. M. Analysis of 13NH4+ efflux in spruce roots – A test case for phase identification in compartmental analysis. Plant Physiol. 109, 481-490 (1995).
  8. Siddiqi, M. Y., Glass, A. D. M., Ruth, T. J. Studies of the uptake of nitrate in barley. 3. Compartmentation of NO3-. J. Exp. Bot. 42, 1455-1463 (1991).
  9. Lee, R. B., Clarkson, D. T. Nitrogen-13 studies of nitrate fluxes in barley roots. 1. Compartmental analysis from measurements of 13N efflux. J. Exp. Bot. 37, 1753-1767 (1986).
  10. Coskun, D., Britto, D. T., Kronzucker, H. J. Regulation and mechanism of potassium release from barley roots: an in planta 42K+ analysis. New Phytol. 188, 1028-1038 (2010).
  11. Britto, D. T., Kronzucker, H. J., Maathuis, F. .. J. .. M. .. ,. Fluxes measurements of cations using radioactive tracers. Plant Mineral Nutrients: Methods and Protocols, Methods in Molecular Biology. Volume 953, 161-170 (2013).
  12. Meeks, J. C., Knowles, R. ,., Blackburn, T. .. H. 13N techniques. Nitrogen isotope techniques. , 273-303 (1993).
  13. Coskun, D., Britto, D. T., Li, M., Becker, A., Kronzucker, H. J. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots. Plant Physiol. 163, 1859-1867 (2013).
  14. Coskun, D., Britto, D. T., Li, M., Oh, S., Kronzucker, H. J. Capacity and plasticity of potassium channels and high-affinity transporters in roots of barley and Arabidopsis. Plant Physiol. 162, 496-511 (2013).
  15. Johansson, I., et al. External K+ modulates the activity of the Arabidopsis potassium channel SKOR via an unusual mechanism. Plant J. 46, 269-281 (2006).
  16. Nocito, F. F., Sacchi, G. A., Cocucci, M. Membrane depolarization induces K+ efflux from subapical maize root segments. New Phytol. 154, 45-51 (2002).
  17. Wang, M. Y., Glass, A. D. M., Shaff, J. E., Kochian, L. V. Ammonium uptake by rice roots. 3. Electrophysiology. Plant Physiol. 104, 899-906 (1994).
  18. Walker, D. J., Leigh, R. A., Miller, A. J. Potassium homeostasis in vacuolate plant cells. Proc. Natl. Acad. Sci. U.S.A. 93, 10510-10514 (1996).
  19. Holm, L. M., et al. NH3 and NH4+ permeability in aquaporin-expressing Xenopus oocytes. Pflugers Archiv. Eur. J. Physiol. 450, 415-428 (2005).
  20. Britto, D. T., Kronzucker, H. J. Trans-stimulation of 13NH4+ efflux provides evidence for the cytosolic origin of tracer in the compartmental analysis of barley roots. Funct. Plant Biol. 30, 1233-1238 (2003).
  21. Malagoli, P., Britto, D. T., Schulze, L. M., Kronzucker, H. J. Futile Na+ cycling at the root plasma membrane in rice (Oryza sativa L.): kinetics, energetics, and relationship to salinity tolerance. J. Exp. Bot. 59, 4109-4117 (2008).
  22. Kronzucker, H. J., Britto, D. T. Sodium transport in plants: a critical review. New Phytol. 189, 54-81 (2011).

Play Video

Cite This Article
Coskun, D., Britto, D. T., Hamam, A. M., Kronzucker, H. J. Measuring Fluxes of Mineral Nutrients and Toxicants in Plants with Radioactive Tracers. J. Vis. Exp. (90), e51877, doi:10.3791/51877 (2014).

View Video