This protocol describes the design and surgical implantation of a head-restraining mechanism to monitor neuronal activity in sub-cortical brain structures in alert rats. It delineates procedures to isolate single neurons in the juxtacellular configuration and to efficiently identify their anatomical locations.
There are a variety of techniques to monitor extracellular activity of single neuronal units. However, monitoring this activity from deep brain structures in behaving animals remains a technical challenge, especially if the structures must be targeted stereotaxically. This protocol describes convenient surgical and electrophysiological techniques that maintain the animal’s head in the stereotaxic plane and unambiguously isolate the spiking activity of single neurons. The protocol combines head restraint of alert rodents, juxtacellular monitoring with micropipette electrodes, and iontophoretic dye injection to identify the neuron location in post-hoc histology. While each of these techniques is in itself well-established, the protocol focuses on the specifics of their combined use in a single experiment. These neurophysiological and neuroanatomical techniques are combined with behavioral monitoring. In the present example, the combined techniques are used to determine how self-generated vibrissa movements are encoded in the activity of neurons within the somatosensory thalamus. More generally, it is straightforward to adapt this protocol to monitor neuronal activity in conjunction with a variety of behavioral tasks in rats, mice, and other animals. Critically, the combination of these methods allows the experimenter to directly relate anatomically-identified neurophysiological signals to behavior.
Monitoring neuronal activity in an alert animal actively engaged in a behavioral task is critical for understanding the function and organization of the nervous system. Extracellular recording of the electrical activity from single neuronal units has long been a staple tool of systems neuroscience and is still widely in use at present. A variety of electrode types and configurations are available depending on the scientific and technical demands of a particular experiment. Chronically implanted microdrives or electrode arrays are often used in freely moving animals, including birds, rodents, and non-human primates1-4. Alternatively, acute penetrations with metal or glass microelectrodes via an external micromanipulator are often used to record from anesthetized or head-restrained animals. Glass micropipette electrodes have the advantage that they can be used in the juxtacellular or “cell attached” configuration to unambiguously isolate the activity of single neurons without the complications of post-hoc spike sorting5. These electrodes further permit recording from anatomically-identified cells or locations, as they can be used to inject small deposits of dye or neuroanatomical tracers, or even to fill the individual recorded cell. This configuration has been successfully applied in rats, mice and birds6-10. The presently described technique focuses on juxtacellular monitoring and extracellular dye deposits in alert, head-restrained rats. Note that unlike single cell juxtacellular fills, these dye deposits do not provide information about cell morphology or axonal projections11, but they enable exact anatomical localization to approximately 50 μm and, critically, have a significantly higher yield in alert animals. Information regarding single-cell juxtacellular fills is nonetheless provided as an alternative strategy for anatomical labeling.
In brief, the protocol consists of three major phases. In the first phase, the rat is acclimated to body restraint in a cloth sock (Figure 1) over a period of 6 days. In the second phase, a head restraint apparatus (Figure 2) and recording chamber are surgically implanted such that the rat can be maintained in the stereotaxic plane during multiple subsequent recording sessions (Figure 3); this procedure enables the experimenter to target particular sub-cortical regions of the brain for electrophysiological study based on standard reference coordinates12. The third phase involves placing the rat in an appropriate jig for conducting the behavioral and electrophysiological experiments (Figure 4), constructing the electrode from a quartz capillary tube (Figure 5), making juxtacellular neuronal recordings that unambiguously isolate single units6-9, and marking the anatomical location of the recording site with Chicago Sky Blue dye (Figures 6 and 7). The recordings are performed with simultaneous behavioral monitoring; however, the technical details of the behavior will depend on the scientific goals of each experiment and are thus beyond the scope of a single protocol. After completion of the experimental procedure, which can be repeated on multiple days, the animal is euthanized. The brain is extracted and processed according to standard neuroanatomical techniques using either bright field or fluorescence microscopy.
Experimental protocols were carried out on female Long Evans rats (250 – 350 g) in accordance with federally prescribed animal care and use guidelines and were approved by the Institutional Animal Care and Use Committee at the University of California San Diego.
1. Acclimating the Rat to Body Restraint
NOTE: Place the rat on a restricted diet. Feed the rat once per day immediately after each daily handling session to acclimate the rat to the restraint (described below). Provide enough feed to maintain the animal at 80% of its initial weight. This amount is approximately 6 grams of feed per day for a 250 g female Long Evans rat.
2. Implanting the Recording Chamber and Head-restraint Mechanism
3. Juxtacellular Monitoring of Neuronal Units
Neuronal units in ventral posterior medial (VPM) thalamus encode the phase of vibrissa movement during self-generated whisking15,16. Figure 7A shows sample spiking activity of a VPM thalamic unit as a rat is actively whisking. Figure 7B shows a histogram of spike times aligned to the instantaneous phase of vibrissa motion17. There are more spikes during the retraction phase of whisking. After the recording, the location of the unit was labeled via iontophoresis of Chicago sky blue dye, as shown in Figure 7C. The tissue is counterstained for cytochrome oxidase activity to reveal the neuroanatomical borders of VPM thalamus. A similar version of this protocol was recently applied to monitor whisking-related multiunit neuronal activity (10-20 μm diameter pipette tips) in specific brainstem nuclei18.
Figure 1: Cloth restraining sock. (A) Photograph of a rat sock with drawstrings and drawstring clasps. The small end is placed snugly around the sternum, and the large end around the tail. (B) Design pattern for the sock in panel 1A. Dimensions are in inches.
Figure 2: Mechanical design of head restraint apparatus. (A) Mechanical design of a precision head restraint plate for rats. Dimensions are in inches. (B) Mechanical design of a head restraint bar for use with the plate in panel 2A. The protocol requires two of these parts, mounted using right-angle post clamps at the same pitch angle. Please click here to view a larger version of this figure.
Figure 3: Surgical procedure. (A) Rat in a stereotaxic holding frame (protocol step 2.4). (B) Surgical site with implanted screws and cranial markings (protocol step 2.10). (C) Surgical site with a craniotomy (protocol step 2.12). (D) Surgical site with the recording chamber (protocol step 2.14). (E) Surgical site with the reference wire and silicone gel (protocol step 2.17). (F, G) Surgical site with head restraint plate and bar held in place (protocol step 2.20). (H) Surgical site in with plate and bar cemented in place (protocol step 2.21). (I) Final head-restraint and recording chamber implant (protocol step 2.24). Please click here to view a larger version of this figure.
Figure 4: Experimental jig. Diagram of rat in the mechanical jig for electrophysiological and behavioral monitoring experiments (protocol steps 3.5-3.6). The jig utilizes the bar and plate in Figure 2.
Figure 5: Micropipette electrode construction. (A) Micrograph of an unbroken micropipette (protocol step 3.1). Scale bar is as in panel C. (B) Micrograph of the unbroken micropipette and glass block under microscope (protocol step 3.2). The reflection of the tip can be seen in the glass. Scale bar is as in panel C. (C) Micrograph of the broken micropipette (protocol step 3.3). (D) Micrograph of the tip of the unbroken micropipette in the boxed region of panel A. Scale bar is as in panel E. (E) Micrograph of the tip of the broken micropipette in the boxed region of panel C. Please click here to view a larger version of this figure.
Figure 6: Equipment for switching between the amplifier and current source. (A) Setup to switch the leads from the amplifier to the current source via a magnetic relay (optional). A printed circuit board containing the voltage-controlled relay switch is attached to the amplifier head stage. (B) Layout for the printed circuit board in panel 6A. The board connects the amplifier leads and current source leads to the input pins of the relay, and the electrode leads to the output pins. The electrode is connected to either the current source or the amplifier by applying either 0 or 5 V to the relay control pins. Bottom view. Dimensions are in inches. (C) Top view of the board layout in panel 6B. (D) Setup to switch the leads from the amplifier to the current source manually (optional) requires an open pipette holder and flexible lead wire like the ones shown (see also: Equipment section). This approach is an alternative to the relay circuit in panels 6A-C. Please click here to view a larger version of this figure.
Figure 7: Experimental setup and representative results. (A) Spikes and vibrissa movement from one unit (protocol step 3.12). (B1) Normalized vibrissa position versus phase in the whisk cycle. Each whisk is normalized such that the most caudal position during the whisk is defined as zero and the most rostral position defined as one. The trajectory represents the normalized position versus instantaneous phase in the whisk cycle17. All identified whisks are superimposed. (B2) Raster of the phase in the whisk cycle at which spikes occur. Each trial on the vertical axis represents a single whisk. (B3) Histogram of spike rates with respect whisk cycle phase for the same unit. (C1) Location of Chicago Sky Blue dye with cytochrome oxidase counterstaining (protocol steps 3.13-3.14). (C2) High resolution view of the outlined region in panel C1. The arrowhead points to the dye label. Please click here to view a larger version of this figure.
Construction of the experimental jig
The description of the mechanical parts used to build the experimental jig (Figure 4) is omitted from the protocol, as it can be constructed in a variety of ways. In this demonstration standard opto-mechanical parts and support clamps are used to mount the head restraint bar and the body restraint tube (see Materials section). Similar opto-mechanical parts can be used to mount the electrode holder to the motorized micromanipulator. It is important that the head restraint bar on the jig is mounted at the same pitch angle as the bar used to implant the head-restraint plate during surgery. If the electrode is to be moved along the standard stereotaxic axes, then the x-axis of the electrode should move parallel to the head-restraint bar, and the z-axis perpendicular to plane containing lambda and bregma and parallel to the ground (Figure 4).
Types of appropriate amplifiers and current sources
There are a variety of commercial amplifiers and current sources that can be used for this experiment. Most extracellular and intracellular electrophysiology amplifiers with a current clamp mode that achieve a total gain of 1,000X are appropriate. For iontophoresis of Chicago Sky Blue with 1-3 μm pipettes, a current source that can deliver up to 10 μA with a resolution of at least 1 μA and a compliance of at least 100 V is recommended. Note that some commercial amplifiers have appropriate built-in current sources (see alternate parts in Materials section). However, to circumvent the requirement of an appropriate combined amplifier/current source, a magnetic relay circuit can be attached to the front end of the amplifier headstage (Figure 6A–C). Such a circuit is optional but it allows the experimenter to switch between the amplifier and a separate current source to deliver iontophoresis pulses without physically perturbing the electrode. An alternative approach is to manually replace the electrode lead wires with ones that connect to the current source. In this case, it is best to use a pipette holder which does not enclose the top (unbroken end) of the pipette, and to use flexible lead wire (Figure 6D).
Steps that may require repeated practice
There are several steps that may require practice to master. The step that requires the most dexterity is breaking the tip of the pipette. It is helpful to paint the edge of the glass block to visualize the reflection of the tip in the glass. Then one can slowly advance the block and the pipette until the tip barely meets its reflection. Advancing pipette or block too fast can shatter the micropipette and make the tip diameter too large or uneven. We recommend using micropipettes made of quartz, as described in the protocol. Quarts micropipettes effectively penetrate intact rat dura in chronically prepared craniotomies without bending or breaking. This eliminates the need for dura resection, which can cause additional complications. Borosilicate micropipettes with short tapers (<5 mm) also penetrate the dura, but their use is limited to recording from superficial structures like the cerebral cortex or striatum. Recording from deeper structures, particularly in thalamus or brainstem, requires long tapered, preferably quartz micropipettes. A second step that requires practice is positioning the pipette in the juxtacellular configuration. Moving the pipette too quickly when close to a cell can rupture the membrane. Therefore, it is helpful to monitor the resistance of the pipette to know when the tip is close to a putative cell. Changes in membrane resistance of at least 2-fold indicate that the electrode may be near or touching a cell membrane.
Common pitfalls
There are several common pitfalls to bear in mind. First, because the pipette tip is necessarily very close to the cell, it is possible to “lose” the cell if the pipette drifts away from the membrane. It is also possible for a cell to become agitated or rupture midway through the recording. If it does, the spike width and firing rate may increase and the spike amplitude may decrease. These are indications that the cell may be unhealthy. Animal movement will inevitably cause these events to happen on some proportion of the recordings, but can be minimized by having the animal well habituated and by avoiding making unnecessary, sudden loud noises or causing vibrations that startle the animal.
Potential modifications to the protocol
It is possible to use this recording and labeling technique in contexts in which the animal is performing a variety of behavioral tasks. Training for a particular behavioral task can be carried out following surgery but before beginning to record. Neuronal activity can be recorded at least 1-2 weeks after preparing the craniotomy, and iontophoretic spots can last for at least 2-3 days. This time frame permits a variety of experimental manipulations, including recording from multiple brain regions during separate recording sessions.
The technique may also be modified to fill the individual neurons from which the recordings are made. This alternative strategy of juxtacellular labeling of single neurons requires mechanical stability that is only achieved when the animal is still or anesthetized. For this labeling strategy, the use of BDA is recommended over Neurobiotin. BDA is not degraded by proteases, which significantly increases the rate of success over Neurobiotin. Labeling should be attempted during the last recording session before perfusing the animal. Note that detailed descriptions of the juxtacellular protocol have been described previously6,19 .While the technique has been employed successfully in alert rats8, in our experience iontophoretic injection of Chicago Sky Blue has a substantially higher yield. Note that both Chicago Sky Blue and Neurobiotin or BDA labeling can be done in the same animal.
This technique is likely to be appropriate for a variety of species. Note that juxtacellular recordings have been made in cortical regions of alert mice9, for example. While training, handling, and head-restraint are species specific, the particular techniques for monitoring and labeling described in this protocol should remain the same. Finally, simply by changing the size of the pipette tip and parameters of the current pulses this technique may be used for iontophoretic injection of a variety of molecules, including pharmacological agents20,21. Thus, the technique could also be useful for neuropharmacological studies which involve behaving animals.
Conclusions
It is often the case that brain regions which are extremely close together can have markedly different properties and/or functions22. In such cases, relating the activity of single neurons from anatomically defined regions to organismal behavior is critical for understanding neural circuits and computation. The present article demonstrates a protocol to accomplish this using a combination of standard techniques and describes sensory encoding in VPM thalamic neurons as an example. The technique is likely to be relevant and feasible in a variety of brain regions and behavioral paradigms in different animal models. It has a substantially higher success rate than single cell juxtacellular labeling in alert animals6,8, and has the advantage of better anatomical resolution over techniques that utilize multi-electrode arrays or microdrives.
The authors have nothing to disclose.
We are grateful to the Canadian Institutes of Health Research (grant MT-5877), the National Institutes of Health (grants NS058668 and NS066664), and the US-Israeli Binational Foundation (grant 2003222) for funding these studies.
Name of the Reagent | Company | Catalogue Number | Comments |
Ketaset (Ketamine HCl) | Fort Dodge | N/A | |
Anased (Xylazine solution) | Lloyd Laboratories | N/A | |
Betadyne (Povidone-Iodine) | CVS Pharmacy | 269281 | |
Loctite 495 | Grainger Industrial Supply | 4KL86 | 20-40 cp cyanoacrylate |
Vetbond | 3M | 1469SB | |
Grip cement powder | Dentsply Intl | 675571 | For the base of the recording chamber |
Grip cement liquid | Dentsply Intl | 675572 | For the base of the recording chamber |
Silicone Gel | Dow Corning | Mar-80 | |
Jet denture repair acrylic powder | Lang Dental Manufacturing Co. | N/A | For securing the head restraint apparatus to the cranium |
Ortho-Jet Fast curing orthodontic acrylic resin liquid | Lang Dental Manufacturing Co. | N/A | For securing the head restraint apparatus to the cranium |
Chicago sky blue | Sigma | C8679 | |
Paraformaldehyde | Sigma | 158127 | For perfusion and tissue fixation |
Phosphate-buffered saline | Sigma | P3813 | For perfusion and tissue fixation |
Cytochrome C | Sigma | C2506 | For cytochrome-oxidase staining (Figure 7) |
Diaminobenzidine | Sigma | D5905 | For cytochrome-oxidase staining (Figure 7) |
Material Name | Company | Catalogue Number | Comments |
Rat sock | Sew Elegant (San Diego, CA) | N/A | Custom made, Figures 1, 4 |
PVC tube 2 ½” | U.S. Plastic Co. | 34108 | Figure 4 |
Subminiature D pins & sockets | TE Connectivity | 205089-1 | Figure 3 |
Stainless steel music wire 0.010” diameter | Precision Brand Products, Inc. | 21010 | Figure 3 |
Stereotaxic holding frame | Kopf Instruments | Model 900 | Figure 3 |
Stereotaxic ear bars | Kopf Instruments | Model 957 | Figure 3 |
Stereotaxic manipulator | Kopf Instruments | Model 960 | Figure 3 |
½ mm drill burr | Henry Schein | 100-3995 | |
Quiet-Air dental drill | Midwest Dental | 393-1600 | |
Stainless steel 0-80 1/8” screw | Fastener superstore | 247438 | Figure 3 |
0.2mL centrifuge tube | Fisher Scientific | 05-407-8A | Figure 3 |
Custom head-holding bar | UCSD SIO Machine Shop | N/A | Custom made, Figures 2, 3, 4 |
Custom head-holding plate | UCSD SIO Machine Shop | N/A | Custom made, Figure 2, 3, 4 |
Right angle post-clamp | Newport | MCA-1 | Figure 3,4; standard opto-mechanical parts for the experimental jig (Figure 4) are also from Newport Corp. |
8-32 3/4” screw | Fastener Superstore | 240181 | For head-restraint, Figure 3 |
4-40 ¼” screw | Fastener Superstore | 239958 | For head restraint, Figures 3, 4 |
Quartz capillary tubing | Sutter Instruments | QF-100-60-10 | Figure 5 |
Carbon dioxide laser puller | Sutter instruments | P-2000 | |
Motorized micromanipulator | Sutter Instruments | MP-285 | |
Microelectrode amplifier | Molecular Devices | Multiclamp 700B | Alternate part: Molecular Devices Axoclamp 900A |
Microelectrode amplifier head stage | Molecular Devices | CV-7B | Alternate part: HS-9Ax10 with Molecular Devices Axoclamp 900A |
Isolated pulse stimulator | A-M Systems | Model 2100 | Alternate part: HS-9Ax10 with Molecular Devices Axoclamp 900A |
Audio monitor | Radio Shack | 32-2040 | |
Pipette holder | Warner Instruments | #MEW-F10T | Alternate parts: see Discussion |
Figure 6A | |||
Electrode lead wire | Cooner wire | NEF34-1646 | (optional), Figure 6D |
Relay for amplifier head-stage | COTO Technology | #2342-05-000 | (optional) Used with a custom-made printed circuit board (UCSD Physics Electronics Shop), Figure 6A-C |
Digital video camera | Basler | A602fm | (optional) For behavioral monitoring, Figure 7 |