Summary

血管再生在中枢神经系统中使用的小鼠视网膜评估

Published: June 23, 2014
doi:

Summary

啮齿动物视网膜长期以来被认为是可访问的窗口到大脑。在此技术论文中,我们提供了一个协议,它采用的氧诱导视网膜病变研究,导致血管再生的失败缺血性损伤后的中枢神经系统内的机制的小鼠模型。所描述的系统也可以利用,以探讨策略,视网膜和中枢神经系统内促进功能性血管再生。

Abstract

啮齿动物视网膜也许是最方便的哺乳动物系统中,中枢神经系统(CNS)内神经血管调查的相互作用。它被越来越多地认识到,一些神经变性疾病如阿尔茨海默氏症,多发性硬化症,与血管妥协肌萎缩性侧索硬化症本元素。此外,失明在儿科和工作年龄人口(早产儿视网膜病变和糖尿病性视网膜病变,分别)的最突出的原因是其特征在于,生理血管再生长的血管退化和故障。本技术文件的目的是提供一个详细的协议来研究中枢神经系统血管再生的视网膜。该方法可以用来阐明导致血管生长的故障缺血性损伤后的分子机制。此外,潜在的治疗方式,以加速和恢复健康的血管丛可以探讨。结果obtaineD使用所描述的方法可以提供的治疗途径,缺血性视网膜病变,如糖尿病或早产儿,可能有利于中枢神经系统的其他血管疾病。

Introduction

整个中枢神经系统发育,神经,免疫细胞和血管建立显着耦合网络,以确保有足够的组织灌注,并允许感官信息1-5传输。血管系统,导致组织氧合不足和代谢受到影响供给和故障日益被视为一个重要因素神经退行性疾病6的发病机制。血管漏失和神经血管单元的大脑内的劣化,例如,与血管性痴呆,脑7的白质血管病变和阿尔茨海默氏病与小动脉和小血管8的狭窄相关联。此外,受损的血管屏障功能被认为有助于多发性硬化症9和肌萎缩性侧索硬化症10。

直接的相关性,以在本协议中所述,致盲的视网膜模型的疾病,如糖 ​​尿病性视网膜病变11和早产儿12的视网膜病变,13的特征是早期血管退化的相位。对神经血管视网膜随后的缺血性应激触发过度和病理血管生成中的第二阶段中可能源于作为一种代偿性反应重新死刑犯氧和能量供应14-16。一个有吸引力的策略来克服缺血性应激是中央到疾病进展是恢复功能性血管网络特别是在神经视网膜( 图23)的局部缺血区。挑起控制血管生成的响应可能会遇到如反直觉对于其中的抗血管生成治疗,如抗的VEGF被认为是适于处理的条件。然而,证据表明这种方法的有效性安装。例如,加强ischem“生理状”血管再生IC视网膜病变已经通过引进内皮前体细胞17,抑制缪勒细胞表达VEGF诱导的其他血管生成因子18,注射髓系祖细胞19,抑制NADPH氧化酶诱导的细胞凋亡20,增加饮食中ω-3多不饱和脂肪酸下调的优雅展现酸摄入21,具有色氨酸tRNA合成酶22的羧基末端片段和VEGF或FGF-2的保护胶质细胞23的直接给药治疗。此外,我们已经表明,调节神经古典的指导线索,如脑信号或导蛋白在缺血性视网膜病变加速视网膜内的良性血管的血管再生,从而减少病理性血管生成24,25。直接的临床意义,几个上述动物研究提供的证据表明,促进血管再生成期间视网膜病的早期缺血阶段可以显著减轻威胁视力的视网膜前新生血管形成19,23,24,26,有可能通过对缺血性负担的减轻。

制定刺激的功能性血管再生治疗策略仍然是血管生物学家一个显著的挑战。在这里,我们描述了一个实验系统,它采用的氧诱导视网膜病变(OIR)小鼠模型,探讨策略,视网膜内调节血管再生。 Smith 等人开发的于1994年27,这种模式可作为人类增生性视网膜病变的代理,由露出P7鼠标幼仔至75%的O 2,直到P12和随后重新引进幼犬室内环境张力( 1)。这一模式松散模仿一个场景:一个早产儿通风与O 2。鼠标幼仔高氧暴露引发视网膜毛细血管和微血管病变,并产生血管闭塞的可重复的区域(VO)通常在评估从O 2的出口在P12,虽然最大VO面积达到48小时(P9)后接触到O 2 28。在小鼠中,股骨头缺血性VO区自发地重新在一周的过程中下面再介绍了室内空气,并最终VO区域被完全重新血管化( 图2)。重新引入到经受OIR小鼠的室内空气也引发视网膜前新生血管形成(NV)(最多为P17),它通常评估,以确定抗血管生成治疗模式的疗效。在其最纯粹的形式,OIR模型提供了一个高度可重复的,可量化的工具来评估氧 ​​诱导的血管退化,并确定破坏性预视网膜新生血管形成29-31的程度。

<p class ="“jove_content”">该调节中枢神经系统血管再生的各种探索性的治疗模式可使用OIR模型,包括使用的化合物的药理学,基因治疗,基因缺失和更多的被调查。一个给定的方法来影响血管再生的倾向评估逐步在P12(从高氧退出后最大VO)和P17(最大内华达州)之间的窗口。评价病理NV的治疗结果可以并行地快速和容易地测定,并已Stahl和同事30,31被彻底说明。在这里,我们提供了一个简单的一步一步的过程由药物化合物,有意治疗,病毒载体进行调查生理血运重建的调节神经视网膜内或研究的候选基因在转基因或基因敲除小鼠的影响。

Protocol

伦理声明:所有动物实验坚持以研究协会在视觉与眼科在眼科用动物和视觉研究和动物保健的加拿大委员会(ARVO)语句建立的动物护理指引。 1。氧诱导视网膜病变(OIR) 鼠标幼仔为P0出生记录日期。 在进入O 2,记录动物的全部重量,以确保有足够的体重范围。注意:对于C57BL / 6小鼠在P17,体重应5和7.5 g的为最大NV 32系列 。为了?…

Representative Results

的OIR模型被广泛用于研究氧诱导血管变性和局部缺血引起的病理性新生血管在视网膜中和一直在为眼部疾病27,29,30目前使用的抗血管生成治疗的发展。利用该模型得到的结果可以大致推断缺血性视网膜病变,如增殖性糖尿病视网膜病变和30早产儿视网膜病变。 在这里,我们提出一个替代使用这个模型来研究血管再生。我们将描述一个策略的例子来再生,这?…

Discussion

什么是刺激在缺血性神经组织中新血管的健康成长最有效的方法是什么?它是治疗有效的干预和加速自然发生的血管再生?在神经缺血性疾病,如缺血性视网膜病或中风,血管退化与减少神经元功能35-38相关联。因此,应对早期损伤,疾病的直接/早段期间复原区域微循环可能证明是有益的。在眼部背景下,实验范式是加速缺血性视网膜血管重建减少病理性新生血管形成21-25,34,?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

PS持有加拿大研究主席在视网膜细胞生物学和爱尔康研究院新研究者奖。这项工作是由健康研究加拿大学院(221478)的资金支持,加拿大糖尿病协会(OG-3-11-3329-PS)的加拿大自然科学和工程研究理事会(418637)和基金会战斗失明加拿大。技术支持也由送货线路德RECHERCHE恩桑特德拉视觉魁北克提供。

Materials

C57Bl/6 mice ((Other strains may be used; angiogenic response varies from one strain to the other)
CD1 nursing mothers Vendor of choice
Operating Scissors straight World Precision Instruments 14192
Dissecting Scissors straight World Precision Instruments 14393
Vannas Eye Scissors Harvard Apparatus 72-8483
Iris Forceps, curved, serrated World Precision Instruments 15915
Brushes 362R size 0 Dynasty
Dumont Forceps #3; straight World Precision Instruments 500338
Surgical Blade, size 10 Bard-Parker 371110
Rhodamine Griffonia (Bandeiraea) Simplicifolia Lectin I Vector Laboratories, Inc RL-1102
Microscope slides VWR 16004-368
Fluoromount G Electron Microscopy Sciences 17984-25
Zeiss Axio Observer Z1 Inverted Phase and Fluorescence Microscope Zeiss
Leica MZ9.5 Stereomicroscope Leica
Fluorescein isothicyanate-dextran, 70000 Sigma-Aldrich 46945

References

  1. Carmeliet, P., Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature. 436, 193-200 (2005).
  2. Eichmann, A., Thomas, J. L. Molecular Parallels between Neural and Vascular Development. Cold Spring Harb Perspect Med. 3, (2012).
  3. Larrivee, B., Freitas, C., Suchting, S., Brunet, I., Eichmann, A. Guidance of vascular development: lessons from the nervous system. Circ Res. 104, 428-441 (2009).
  4. Stefater Iii, J. A., et al. Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells. Nature. 474, 511-515 (2011).
  5. Checchin, D., Sennlaub, F., Levavasseur, E., Leduc, M., Chemtob, S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 47, 3595-3602 (2006).
  6. Quaegebeur, A., Lange, C., Carmeliet, P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron. 71, 406-424 (2011).
  7. Yamamoto, Y., Craggs, L., Baumann, M., Kalimo, H., Kalaria, R. N. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropathol Appl Neurobiol. 37, 94-113 (2011).
  8. Brun, A., Englund, E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol. 19, 253-262 (1986).
  9. Prat, A., et al. Migration of multiple sclerosis lymphocytes through brain endothelium. Arch Neurol. 59, 391-397 (2002).
  10. Rule, R. R., Schuff, N., Miller, R. G., Weiner, M. W. Gray matter perfusion correlates with disease severity in ALS. Neurology. 74, 821-827 (2010).
  11. Antonetti, D. A., Klein, R., Gardner, T. W. Diabetic retinopathy. N Engl J Med. 366, 1227-1239 (2012).
  12. Hartnett, M. E., Penn, J. S. Mechanisms and management of retinopathy of prematurity. N Engl J Med. 367, 2515-2526 (2012).
  13. Sapieha, P., et al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J Clin Invest. 120, 3022-3032 (2010).
  14. Chen, J., Smith, L. Retinopathy of prematurity. Angiogenesis. 10, 133-140 (2007).
  15. Cheung, N. Diabetic retinopathy and systemic vascular complications. Progress in Retinal and Eye Research. 27, 161-176 (2008).
  16. Smith, L. E. Through the eyes of a child: understanding retinopathy through ROP the Friedenwald lecture. Invest Ophthalmol Vis Sci. 49, 5177-5182 (2008).
  17. Caballero, S., et al. Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes. 56, 960-967 (2007).
  18. Wang, H., et al. VEGF-mediated STAT3 activation inhibits retinal vascularization by down-regulating local erythropoietin expression. Am J Pathol. 180, 1243-1253 (2012).
  19. Ritter, M. R., et al. Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy. J Clin Invest. 116, 3266-3276 (2006).
  20. Saito, Y., Geisen, P., Uppal, A., Hartnett, M. E. Inhibition of NAD(P)H oxidase reduces apoptosis and avascular retina in an animal model of retinopathy of prematurity. Mol Vis. 13, 840-853 (2007).
  21. Connor, K. M., et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat Med. 13, 868-873 (2007).
  22. Banin, E., et al. T2-TrpRS inhibits preretinal neovascularization and enhances physiological vascular regrowth in OIR as assessed by a new method of quantification. Invest Ophthalmol Vis Sci. 47, 2125-2134 (2006).
  23. Dorrell, M. I., et al. Maintaining retinal astrocytes normalizes revascularization and prevents vascular pathology associated with oxygen-induced retinopathy. Glia. 58, 43-54 (2010).
  24. Joyal, J. -. S., et al. Ischemic neurons prevent vascular regeneration of neural tissue by secreting semaphorin 3A. Blood. 117, 6024-6035 (2011).
  25. Binet, F., et al. Neuronal ER Stress Impedes Myeloid-Cell-Induced Vascular Regeneration through IRE1alpha Degradation of Netrin-1. Cell Metab. 17, 353-371 (2013).
  26. Fukushima, Y., et al. Sema3E-PlexinD1 signaling selectively suppresses disoriented angiogenesis in ischemic retinopathy in mice. J Clin Invest. 121, 1974-1985 (2011).
  27. Smith, L. E., et al. Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 35, 101-111 (1994).
  28. Lange, C., et al. Kinetics of retinal vaso-obliteration and neovascularisation in the oxygen-induced retinopathy (OIR) mouse model. Graefes Arch Clin Exp Ophthalmol. 247, 1205-1211 (2009).
  29. Connor, K. M., et al. Quantification of oxygen-induced retinopathy in the mouse: a model of vessel loss, vessel regrowth and pathological angiogenesis. Nature Protocols. 4, 1565-1573 (2009).
  30. Stahl, A., et al. The mouse retina as an angiogenesis model. Invest Ophthalmol Vis Sci. 51, 2813-2826 (2010).
  31. Stahl, A., et al. Computer-aided quantification of retinal neovascularization. Angiogenesis. 12, 297-301 (2009).
  32. Stahl, A., et al. Postnatal Weight Gain Modifies Severity and Functional Outcome of Oxygen-Induced Proliferative Retinopathy. Am J Pathol. 177, 2715-2723 (2010).
  33. Cerani, A., et al. Neuron-Derived Semaphorin 3A is an Early Inducer of Vascular Permeability in Diabetic Retinopathy via Neuropilin-1. Cell Metabolism. 18, 505-518 (2013).
  34. Sapieha, P. Eyeing central neurons in vascular growth and reparative angiogenesis. Blood. 120, 2182-2194 (2012).
  35. Dorfman, A., Dembinska, O., Chemtob, S., Lachapelle, P. Early manifestations of postnatal hyperoxia on the retinal structure and function of the neonatal rat. Invest Ophthalmol Vis Sci. 49, 458-466 (2008).
  36. Dorfman, A. L., Joly, S., Hardy, P., Chemtob, S., Lachapelle, P. The effect of oxygen and light on the structure and function of the neonatal rat retina. Doc Ophthalmol. 118, 37-54 (2009).
  37. Chopp, M., Zhang, Z. G., Jiang, Q. Neurogenesis, angiogenesis, and MRI indices of functional recovery from stroke. Stroke. 38, 827-831 (2007).
  38. Li, L., et al. Angiogenesis and improved cerebral blood flow in the ischemic boundary area detected by MRI after administration of sildenafil to rats with embolic stroke. Brain Res. 1132, 185-192 (2007).
  39. Robinson, R., Barathi, V. A., Chaurasia, S. S., Wong, T. Y., Kern, T. S. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech. 5, 444-456 (2012).
  40. Chia, R., Achilli, F., Festing, M. F., Fisher, E. M. The origins and uses of mouse outbred stocks. Nat Genet. 37, 1181-1186 (2005).
  41. Jenuth, J. P., Peterson, A. C., Shoubridge, E. A. Tissue-specific selection for different mtDNA genotypes in heteroplasmic mice. Nat Genet. 16, 93-95 (1997).
  42. Mattapallil, M. J., et al. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Investigative ophthalmolog., & visual science. 53, 2921-2927 (2012).

Play Video

Cite This Article
Miloudi, K., Dejda, A., Binet, F., Lapalme, E., Cerani, A., Sapieha, P. Assessment of Vascular Regeneration in the CNS Using the Mouse Retina. J. Vis. Exp. (88), e51351, doi:10.3791/51351 (2014).

View Video