Summary

从海马CA1区片核富含分的分离,研究突触核信使蛋白质的活性依赖进口核

Published: August 10, 2014
doi:

Summary

我们提供了用于诱导的长时程增强,在海马CA1区和核富集级分的从片的tetanized区域的随后分离的详细协议。这种方法可以被用来确定活性依赖的核蛋白质导入在学习和记忆的细胞模型。

Abstract

学活性依赖的蛋白表达,细胞内转位,或磷酸化是必不可少的理解突触可塑性的潜在的细胞机制。长时程增强(LTP)和诱导的急性海马长时程抑制(LTD)被广泛地接受为学习和记忆的细胞模型。有迹象表明,使用活细胞成像和免疫组化的方法来可视化活动相关的蛋白质动力学大量的研究。然而,这些方法依赖于抗体的免疫细胞化学在单个神经元的荧光标记蛋白或过表达的适宜性。蛋白质的免疫印迹是一种替代方法提供的结果,独立确认。在制备由个别tetanized海马切片的亚细胞级分的第一限制因素是材料的低量。二,处理程序是至关重要的,因为升甚至很短,小的操作艾尔文片可能会引起一定的激活信号级联。在这里,我们描述,以便获得足够纯度的核浓缩部分的足够量的从大鼠脑急性海马切片的CA1区的优化工作流程。作为一个代表性的例子中,我们表明,突触核蛋白质的信使的ERK1 / 2磷酸化形式雅各积极进入细胞核后,诱导LTP,并且可以从CA1区神经元核浓缩部分进行检测。

Introduction

突触N-甲基-D-天冬氨酸受体(NMDA受体)发挥在突触可塑性和细胞存活信号而激活突触外NMDA受体的可触发的神经变性和细胞死亡的关键作用。这些变化依赖于严密控制/受规管活动相关的基因表达,因此需要激活突触或树突和细胞核7之间不断的沟通。在MAP激酶ERK1 / 2的突触NMDA受体的信号的下游效应,并参与NMDA受体活化诱导的基因表达,而经由突触外NMDA受体信号没有或ERK1 / 2的活性8,11的抑制作用。

有迹象表明,已经显示出远端树突和细胞核之间穿梭蛋白的数量。许多这些蛋白质含有核定位信号,并正在积极沿着在动力蛋白和importin依赖性微管运输到核6,9。 InterestinglY,一些使者只是过境到细胞核针对特定突触的刺激。例如,环AMP应答元件结合蛋白2(CREB2)的逆行运输,通过化学股份有限公司但不LTP 12诱导。本地化的NMDA受体依赖的突触刺激驱动CREB调节转录共激活因子(CRTC1)进入细胞核,易位过程,其涉及在长期海马可塑性4。它最近的研究表明,该蛋白信使雅各布转位到后两个核,突触和突触外NMDA受体的激活和调节CREB依赖性基因转录的5。信号的突触和突触外原点编码雅各的翻译后修饰。突触活动引起雅各ERK1 / 2磷酸化依赖于在位置180(pJacobS 180)的一个关键丝氨酸这是一个必要的后续易位初级海马文化的核心。此外,我n个急性海马pJacobS 180转位到谢弗抵押LTP后核CA1区神经元而不是公司 。 pS180雅各导致的可塑性相关的基因表达增加,这基因表达反馈到突触功能。形成鲜明对比,雅各布该易位至细胞核后突触外NMDA受体活化不磷酸化在Ser180和可能具有不同的蛋白复合物有关在核中引起“CREB切断”和突触触头10回缩。

对突触核蛋白质的信使核进口的大多数已发表的研究中分离的神经细胞原代培养工作已经完成。因此,这将是有趣的,如果这样的调查结果可以复制使用海马生理更多的相关条件下神经元的连接和功能更好的保存。在这里,我们提出了一个优化的协议,以评估LTP-DE通过免疫印迹侧基的蛋白质信使核转。这个方法也适合于分析中的粗核级分的蛋白质的活性依赖的磷酸化。具体来说,目前的协议包括制备急性海马CA1区片,感应和记录的LTP。接着,CA1区用显微镜解剖,分离出刺激的区域。我们结合和修饰赵和他的同事17引入的更改提供CellLytic核抽提试剂盒的协议核隔离。优化过程包括解剖海马CA1区的低渗缓冲液裂解使细胞肿胀,核释放。细胞裂解和细胞核形态可以通过显微镜检查来确定。铀浓缩是一个短离心步骤来实现的。免疫印迹分析用抗体的NeuN和NSE2,核或细胞质级分的特异性标记物,表明该方法可以被用作快速和可重复的协议来隔离这些亚细胞组分,并研究样蛋白的磷酸化非常不稳定的翻译后修饰。此外,此方法是有利的,对于小的组织样本来自海马切片的CA1区解剖区域导出,并且可以组合使用,以海马切片的免疫组化分析。

Protocol

从成年大鼠脑1。制备急性海马脑片麻醉大鼠异氟醚。注意:执行使用封闭exicator的过程中,不要吸入异氟醚。确保动物完全麻醉。 杀头的大鼠,迅速 ​​隔离大脑,并沉浸在precarbonated(95%O 2/5%CO 2的混合气体)冰冷Gey中的溶液(组成MM:130氯化钠,4.9氯化钾,1.5氯化钙2·2H 2 O ,0.3硫酸镁4·2H 2 O,11氯化镁2·6H 2 O,0.23 KH 2 PO 4,0.8的…

Representative Results

之前我们已经表明,突触核蛋白质的信使雅各下诱导LTP,但不有限公司1个聚集在细胞核内。此外,刺激突触后转雅各需要激活蛋白激酶ERK1 / 2磷酸化雅各在Ser180( 图1)。磷酸雅各易位至细胞核中的importin依赖性和磷酸化状态可以被保存在延长的时间周期由协会与中间丝αinternexin15( 图1)。雅各的磷酸化状态是对的活性依赖性基因和细胞存活的表达很重要…

Discussion

在上述协议中所述的步骤提供指导如何准备从青年或成年大鼠海马急性切片,诱导和记录LTP,迅速解剖切片的刺激区域,并准备核浓缩部分的研究活动相关的蛋白质动力学。这种方法源于对彼此独立地使用几种不同的方法组合。我们优化的工作流程,并为初学者建立自己的实验后,LTP的诱导,研究蛋白质的亚细胞再分配提供足够的细节。作为一个例子,我们证明了LTP的晚期形式诱导S180的核积累磷…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was funded by the DFG (SFB 779 TPB8, Kr1879/3-1 MRK), DIP grant (MRK), EU FP7 MC-ITN NPlast (MRK), Center for Behavioral Brain Sciences (CBBS, Sahsen-Anhalt), (AK and SB), MM is a recipient of European Molecular Biology Organization (EMBO) Long-Term Fellowship (EMBO ALTF 884-2011) and Marie-Curie IEF.

Materials

Table 1. Equipment
CED 1401 AD/DA converter Cambridge Electronics Design, UK
Axopatch 200B amplifier Axon,USA
Axon Digidata acquisition system Axon,USA
Clampex 10.0 Data acquisition and analysis software Axon,USA
Leica microscope Leica TCS SP2,Germany
P-97 Standard microelectrode puller Sutter,USA
Stereomicroscope Leica Leica S4E, Germany
Vibrotome Leica VT1000S, Germany
Isolated pulse stimulator Model2100, A-M systmes, USA
Centrifuge Thermo Scientific, HERAEUS, FRSCO17
SDS-PAGE system BIORAD
Cooler JULABO
Bright field Microscope NIKON ECLIPSE TS100
Cell culture incubator Thermo Electron Corporation, HERAEUS
Micromanipulator Luigs & Neumann, SM-5, Germany
Blotting chamber and electric power supplier Hoefer Scientific Instruments, San Francisco
Cooler Julabo, F12
Centrifuge Thermo Scientific, Heraeus, FRESCO 17
Submerged type Recording Chamber custom made
U-shape and submerged type incubator  custom made
Small surgical scissors
Scalpel
Thin spatula
Plastic Pasteur pipette
Plastic culture dish 
Bunsen beaker
Syringe
Table 2. Reagents
Name of Reagent Company Catalog Number Comments/Description
NaCl ROTH Art.-Nr.3957.1 ≥99.5%, p.a.,ACS,ISO
KCl ROTH Art.-Nr.6781.1 ≥99.5%, p.a.,ACS,ISO
CaCl2·2H2O MERCK 1.02382.0500 pro analysi
MgSO4·2H2O MERCK 5886.05 pro analysi
MgCl2·6H2O AppliChem CAS-NO: 7791-18-6; EC-NO:2320946 for Molecularbiology
KH2PO4 MERCK 12034.025 for Molecularbiology
Na2HPO4·2H2O MERCK 1.06574.1000 extra pure
Glucose·H2O ROTH Art.-Nr.6887.1 for Molecularbiology
Hepes ROTH Art.-Nr.9105.4 PUFFERAN, ≥99.5%, p.a.
NaHCO3 MERCK 1.06329.1000 pro analysi
Protease inhibitor Coctail ROCHE
Phosphostop ROCHE
Bicuculline Tocris bioscience
 Isofluran Baxter
Table 4. Antibodies
Primary antibodies Company Catalog Number Species
pJac-s180 Biogenes/ purified rabbit (dil. 1:100)
NeuN Milipore MAB377 mouse (dil. 1:1,000)
NSE Cell Signaling D20H2 rabbit (dil. 1:1,000)
beta-actin Sigma A-5441 mouse (dil. 1:5,000)
Secondary antibodies Species
IgG HRP Conjugated DAKO goat anti – mouse (1:5,000)
IgG HRP Conjugated NEB goat anti – rabbit (1:5,000)

References

  1. Behnisch, T., et al. Nuclear translocation of Jacob in hippocampal neurons after stimuli inducing long-term potentiation but not long-term depression. PLoS One. 6 (2), e17276 (2011).
  2. Cai, F., Frey, J. U., Sanna, P. P., Behnisch, T. Protein degradation by the proteasome is required for synaptic tagging and the heterosynaptic stabilization of hippocampal late-phase long-term potentiation. 신경과학. 169 (4), 1520-1526 (2010).
  3. Chapman, C. A., Perez, Y., Lacaille, J. C. Effects of GABA(A) inhibition on the expression of long-term potentiation in CA1 pyramidal cells are dependent on tetanization parameters. Hippocampus. 8 (3), 289-298 (1998).
  4. Ch’ng, T. H., Uzgil, B., Lin, P., Avliyakulov, N. K., O’Dell, T. J., Martin, K. C. Activity-dependent transport of the transcriptional coactivator CRTC1 from synapse to nucleus. Cell. 150 (1), 207-221 (2012).
  5. Dieterich, D. C., et al. Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus. PLoS Biol. 6 (2), e34 (2008).
  6. Fainzilber, M., Budnik, V., Segal, R. A., Kreutz, M. R. From synapse to nucleus and back again–communication over distance within neurons. J. Neurosci. 31 (45), 16045-16048 (2011).
  7. Hardingham, G. E., Bading, H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11 (10), 682-696 (2010).
  8. Ivanov, A., et al. Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J. Physiol. 57, 789-798 (2006).
  9. Jordan, B. A., Kreutz, M. R. Nucleocytoplasmic protein shuttling: the direct route in synapse-to-nucleus signaling. Trends Neurosci. 32 (7), 392-401 (2009).
  10. Karpova, A., et al. Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152 (5), 1119-1133 (2013).
  11. Kim, M. J., Dunah, A. W., Wang, Y. T., Sheng, M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron. 46, 745-760 (2005).
  12. Lai, K. O., Zhao, Y., Ch’ng, T. H., Martin, K. C. Importin-mediated retrograde transport of CREB2 from distal processes to the nucleus in neurons. Proc. Natl. Acad. Sci. U.S.A. 105 (44), 17175-17180 (2008).
  13. Leutgeb, J. K., Frey, J. U., Behnisch, T. LTP in cultured hippocampal-entorhinal cortex slices from young adult (P25-30) rats. J. Neurosci. Methods. 130 (1), 19-32 (2003).
  14. Leutgeb, J. K., Frey, J. U., Behnisch, T. Single cell analysis of activity-dependent cyclic AMP-responsive element-binding protein phosphorylation during long-lasting long-term potentiation in area CA1 of mature rat hippocampal-organotypic cultures. 신경과학. 131 (3), 601-610 (2005).
  15. Perlson, E., Hanz, S., Ben-Yaakov, K., Segal-Ruder, Y., Seger, R., Fainzilber, M. Vimentin-dependent spatial translocation of an activated MAP kinase in injured nerve. Neuron. 45 (5), 715-726 (2005).
  16. Xiang, Z., et al. Long-term maintenance of mature hippocampal slices in vitro. J. Neurosci. Methods. 98 (2), 145-154 (2000).
  17. Zhao, M., Adams, J. P., Dudek, S. M. Pattern-dependent role of NMDA receptors in actin potential generation: consequences on extracellular signal-regulated kinase activation. J. Neurosci. 25 (30), 7032-7039 (2005).

Play Video

Cite This Article
Yuanxiang, P., Bera, S., Karpova, A., Kreutz, M. R., Mikhaylova, M. Isolation of CA1 Nuclear Enriched Fractions from Hippocampal Slices to Study Activity-dependent Nuclear Import of Synapto-nuclear Messenger Proteins. J. Vis. Exp. (90), e51310, doi:10.3791/51310 (2014).

View Video