Summary

Split-et-piscine Synthèse et caractérisation de peptides tertiaire Amide Bibliothèque

Published: June 20, 2014
doi:

Summary

Peptides amides tertiaires (APE) sont une superfamille de peptidomimétiques qui incluent, mais ne sont pas limités à des peptides, des peptoïdes et les peptides N-méthylés. Nous décrivons ici une méthode synthétique qui combine à la fois divisée et-piscine et stratégies sous-monomères pour synthétiser un une bille bibliothèque d'un composé de PTA.

Abstract

Peptidomimetics sont d'excellentes sources de ligands protéiques. La nature oligomères de ces composés nous permet d'accéder à de grandes bibliothèques de synthèse sur phase solide en utilisant la chimie combinatoire. Une des classes les plus étudiés de peptidomimétiques est peptoids. Les peptoïdes sont faciles à synthétiser et ont été montrés pour être résistant à la protéolyse et de la cellule-perméable. Au cours de la dernière décennie, de nombreux ligands de protéines utiles ont été identifiés par criblage de banques de peptoïdes. Cependant, la plupart des ligands identifiés dans les bibliothèques peptoïdes ne s'affichent pas une affinité élevée, à de rares exceptions. Cela peut être dû, en partie, à l'absence de centres chiraux et des contraintes conformationnelles des molécules peptoïdes. Récemment, nous avons décrit une nouvelle voie de synthèse pour accéder peptides amides tertiaires (APE). PTA sont une superfamille de peptidomimétiques qui incluent, mais ne sont pas limités à des peptides, des peptoïdes et les peptides N-méthylés. Avec des chaînes latérales sur les deux α-carbone et des atomes d'azote principaux de la chaîne,la conformation de ces molécules sont grandement limitée par encombrement stérique et 1,3 allylique souche. (Figure 1) Notre étude suggère que ces molécules d'ATP sont très structurés en solution et peuvent être utilisés pour identifier des ligands protéiques. Nous croyons que ces molécules peuvent être une source future de ligands protéiques de haute affinité. Ici, nous décrivons la méthode de synthèse combinant la puissance de deux split-et-piscine et stratégies sous-monomères pour synthétiser un échantillon d'un cordon d'un composé (OBOC) bibliothèque de PTA.

Introduction

Sont des composés peptidomimétiques qui imitent la structure des peptides naturels. Ils sont conçus pour conserver l'activité biologique, tout en surmontant certains des problèmes associés aux peptides naturels, y compris la perméabilité cellulaire et la stabilité contre la protéolyse 1-3. En raison de la nature oligomère de ces composés, de grandes bibliothèques de synthèse peuvent être facilement accessibles par des voies de synthèse de sous-monomères ou monomères 4-7. Une des classes les plus étudiées de peptidomimétiques est peptoids. Les peptoïdes sont des oligomères de glycines N-alkylés qui peuvent être facilement synthétisés en utilisant une stratégie de sous-monomère 8, 9. Beaucoup de ligands de protéines utiles ont été identifiés avec succès de criblage de grandes banques de peptoïdes synthétique contre des cibles de protéines 1, 10-14. Néanmoins, "hits" identifiés dans les bibliothèques peptoïdes archives rarement très haute affinité vers des cibles protéiques 1,10-14,22. Une major différence entre les peptoïdes et les peptides naturels est que la plupart des peptoïdes n'ont généralement pas la capacité de former une structure secondaire en raison de l'absence de centres chiraux et des contraintes conformationnelles. Pour résoudre ce problème, plusieurs stratégies ont été développées au cours de la dernière décennie, en grande partie en se concentrant sur ​​la modification des chaînes latérales contenues sur les principaux atomes d'azote de la chaîne 15-22. Récemment, nous avons développé une nouvelle voie de synthèse d'introduire des chaînes naturelles latérales d'acides aminés sur un squelette peptoïde pour créer peptides amides tertiaires 23.

Peptides amides tertiaires (APE) sont une famille de peptidomimétiques qui incluent, mais ne sont pas limités à des peptides (R 2 = H), les peptoïdes (R 1 = H) et les peptides N-méthylés super (R 1 ≠ H, R 2 = Me) . (Voir Figure 1) Notre voie de synthèse emploie des acides aminés naturels comme source de chiralité et des chaînes latérales sur le45; carbone, et les amines primaires disponibles dans le commerce pour fournir les N-substitutions. Par conséquent, un espace chimique plus grande que celle des peptides simples, des peptoïdes ou des peptides N-méthylés peuvent être explorées. Spectres de dichroïsme circulaire ont montré que les molécules d'ATP sont très structurés en solution. Caractérisation de l'un des complexes protéiques PTA-montre bien que les contraintes de conformation de PTA sont nécessaires pour la liaison. Récemment, nous avons également découvert que certaines des molécules d'ATP possèdent une meilleure perméabilité cellulaire que leurs homologues de peptoïdes et de peptides. Nous croyons que ces bibliothèques de PTA peuvent être une bonne source de ligands de haute affinité pour les protéines cibles. Dans cet article, nous allons discuter de la synthèse d'un échantillon d'une bille un composé (OBOC) bibliothèque de PTA dans les détails avec quelques meilleures conditions pour le couplage et le clivage de ces composés.

Protocol

1. Bases de Split-et-piscine Synthèse Afin de générer efficacement un grand nombre de composés sur la phase solide, la synthèse split-and-pool est souvent utilisé comme une stratégie générale. Comme le montre la figure 4, de Tentagel perles sont d'abord séparée en trois parties. Chaque portion est mis à réagir avec un réactif différent, la génération du premier résidu sur des billes. Après la première réaction, les trois parties sont regroupées, méla…

Representative Results

Ici, nous montrons trois spectres MALDI représentatifs d'un trimère de PTA de liaison. Comme le montre la figure 6A, lorsqu'il est clivé à température ambiante en utilisant 50% de solution de TFA / DCM, une dégradation significative est observée. Sur la figure 6A, un sommet 593 et 484 correspondent au segment de liaison et le trimère de PTA, respectivement, montrent que la molécule entière a été synthétisé avec succès le bourrelet mais dégradée lors du clivage. …

Discussion

Peptides amides tertiaires (APE) sont une superfamille d'oligomères peptidomimétiques. Outre les peptides bien étudiés, peptoids et les peptides N-méthylés, une grande partie des composés de cette famille reste peu étudié, majorly raison d'un manque de méthode de synthèse pour accéder générales peptides N-alkylés. Ici, nous décrivons une méthode efficace pour synthétiser PTA avec des blocs de construction chiraux dérivés d'acides aminés. Auparavant, nous avons signalé à utiliser un nou…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Les auteurs tiennent à remercier le Dr Jumpei Morimoto et le Dr Todd Doran pour une aide précieuse. Ce travail a été soutenu par un contrat du NHLBI (NO1-HV-00242).

Materials

2,4,6 trimethylpyridine ACROS 161950010 CAS:108-75-8
2-morpholinoethanamine Sigma-Aldrich 06680  CAS:2038-03-1  
48% HBr Water solution ALFA AESAR AA14036AT CAS:10035-10-6
Acetaldehyde Sigma-Aldrich 402788 CAS:75-07-0  
Acetonitrile Fisher SR015AA-19PS CAS:75-05-8
Anhydrous Tetrahydrofuran (THF) EMD EM-TX0277-6  CAS:109-99-9
Benzylamine Sigma-Aldrich 185701 CAS:100-46-9
bis(trichloromethyl) carbonate (BTC) ACROS 258950050 CAS:32315-10-9
Bromoacetic acid ACROS 106570010 CAS:79-08-3
Chloranil Sigma-Aldrich 23290 CAS:118-75-2
Cyclohexanemethylamine Sigma-Aldrich 101842 CAS:3218-02-8
D2O Cambridge Isotope DLM-4-99.8-1000 CAS:7789-20-0
D-alanine Anaspec 61387-100 CAS:338-69-2  
Dichloromethane (DCM) Fisher BJ-NS300-20 CAS:75-09-2
Dimethylformamide (DMF) Fisher BJ-076-4 CAS:68-12-2
Ethylene glycol Oakwood 44710 CAS:107-21-1
Isopentylamine Sigma-Aldrich W321907 CAS:107-85-7
KBr ACROS 424070025 CAS:7758-02-3
L-alanine Anaspec 61385-100 CAS:56-41-7 
3-Methoxypropylamine Sigma-Aldrich M25007 CAS:5332-73-0
2-Methoxyethylamine Sigma-Aldrich 143693 CAS:109-85-3
N-(3-Aminopropyl)-2-pyrrolidinone Sigma-Aldrich 136565  CAS:7663-77-6 
N,N'-Diisopropylcarbodiimide (DIC) ACROS 115211000 CAS:693-13-0
N,N-Diisopropylethylamine (DIPEA) Sigma-Aldrich D125806 CAS:7087-68-5
NaNO2 ACROS 424340010 CAS:7631-99-4
NAOD 40% solution in water ACROS 200058-506 CAS:7732-18-5
Piperidine ALFA AESAR A12442-AE CAS:110-89-4
Piperonylamine Sigma-Aldrich P49503  CAS:2620-50-0
Propylamine Sigma-Aldrich 240958 CAS:107-10-8
Trifluoroacetic acid Sigma-Aldrich 299537 CAS:76-05-1
α-Cyano-4-hydroxycinnamic acid  Sigma-Aldrich 39468 CAS:28166-41-8  
α-ketoglutarate ALFA AESAR AAA10256-22 CAS:328-50-7
Tentagel Resin with RINK linker Rapp-Polymere S30023
Alanine transaminase Roche 10105589001 AKA: Glutamate-Pyruvate Transaminase (GPT)
Incubator New Brunswick Scientific Innova44
NMR Bruker 400MHz
MALDI mass spectrometer Applied Biosystems  4800 MALDI-TOF/TOF
Lyophilizer SP Scientific VirTis benchtop K
Syringe reactor INTAVIS  Reaction Column 3ml, 5ml, 10ml, 20ml
Vacuum manifold  Promega A7231 Vac-Man

References

  1. Xiao, X., Yu, P., Lim, H. -. S., Sikder, D., Kodadek, T. Design and Synthesis of a Cell-Permeable Synthetic Transcription Factor Mimic. Journal of Combinatorial Chemistry. 9, 592-600 (2007).
  2. Miller, S. M., et al. Proteolytic Studies of Homologous Peptide and N-Substituted Glycine Peptoid Oligomers. Bioorganic & Medicinal Chemistry Letters. 4, 2657-2662 (1994).
  3. Grauer, A., Konig, B. Peptidomimetics – A Versatile Route to Biologically Active Compounds. European Journal of Organic Chemistry. 30, 5099-5111 (2009).
  4. Zuckermann, R. N., Kerr, J. M., Kent, S. B. H., Moos, W. H. Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. Journal of the American Chemical Society. 114, 10646-10647 (1992).
  5. Figliozzi, G. M., Goldsmith, R., Ng, S. C., Banville, S. C., Zuckermann, R. N. Synthesis of N-substituted glycine peptoid libraries. Methods in Enzymology. 267, 437-447 (1996).
  6. Seebach, D., et al. beta-peptides: Synthesis by Arndt-Eistert homologation with concomitant peptide coupling. Structure determination by NMR and CD spectroscopy and by X-ray crystallography. Helical secondary structure of a beta-hexapeptide in solution and its stability towards pepsin. Helv Chim Acta. 79, 913-941 (1996).
  7. Lam, K. S., et al. A New Type of Synthetic Peptide Library for Identifying Ligand-Binding Activity. Nature. 354, 82-84 (1991).
  8. Simon, R. J., et al. Peptoids – a Modular Approach to Drug Discovery. Proceedings of the National Academy of Sciences of the United States of America. 89, 9367-9371 (1992).
  9. Burkoth, T. S., et al. Toward the synthesis of artificial proteins: the discovery of an amphiphilic helical peptoid assembly. Chem Biol. 9, 647-654 (2002).
  10. Alluri, P. G., Reddy, M. M., Bachhawat-Sikder, K., Olivos, H. J., Kodadek, T. Isolation of protein ligands from large peptoid libraries. Journal of the American Chemical Society. 125, 13995-14004 (2003).
  11. Lim, H. S., Archer, C. T., Kodadek, T. Identification of a peptoid inhibitor of the proteasome 19S regulatory particle. Journal of the American Chemical Society. 129, 7750-7751 (2007).
  12. Wrenn, S. J., Weisinger, R. M., Halpin, D. R., Harbury, P. B. Synthetic ligands discovered by in vitro selection. Journal of the American Chemical Society. 129, 13137-13143 (2007).
  13. Aina, O. H., Marik, J., Liu, R. W., Lau, D. H., Lam, K. S. Identification of novel targeting peptides for human ovarian cancer cells using "one-bead one-compound" combinatorial libraries. Mol Cancer Ther. 4, 806-813 (2005).
  14. Udugamasooriya, D. G., Dineen, S. P., Brekken, R. A., Kodadek, T. A Peptoid “Antibody Surrogate” That Antagonizes VEGF Receptor 2 Activity. Journal of the American Chemical Society. 130, 5744-5752 (2008).
  15. Shah, N. H., et al. Oligo( N-aryl glycines): A New Twist on Structured Peptoids. Journal of the American Chemical Society. 130, 16622-16632 (2008).
  16. Chongsiriwatana, N. P., et al. Peptoids that mimic the structure, function, and mechanism of helical antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America. 105, 2794-2799 (2008).
  17. Paul, B., et al. N-Naphthyl Peptoid Foldamers Exhibiting Atropisomerism. Organic Letters. 14, 926-929 (2012).
  18. Crapster, J. A., Guzei, I. A., Blackwell, H. E. A peptoid ribbon secondary structure. Angewandte Chemie. 52, 5079-5084 (2013).
  19. Gorske, B. C., Stringer, J. R., Bastian, B. L., Fowler, S. A., Blackwell, H. E. New strategies for the design of folded peptoids revealed by a survey of noncovalent interactions in model systems. J Am Chem Soc. 131, 16555-16567 (2009).
  20. Stringer, J. R., Crapster, J. A., Guzei, I. A., Blackwell, H. E. Extraordinarily robust polyproline type I peptoid helices generated via the incorporation of alpha-chiral aromatic N-1-naphthylethyl side chains. J Am Chem Soc. 133, 15559-15567 (2011).
  21. Huang, K., et al. A threaded loop conformation adopted by a family of peptoid nonamers. Journal of the American Chemical Society. 128, 1733-1738 (2006).
  22. Lee, J. H., Kim, H. S., Lim, H. S. Design and Facile Solid-Phase Synthesis of Conformationally Constrained Bicyclic Peptoids. Organic Letters. 13, 5012-5015 (2011).
  23. Gao, Y., Kodadek, T. Synthesis and Screening of Stereochemically Diverse Combinatorial Libraries of Peptide Tertiary Amides. Chem Biol. 20, 360-369 (2013).
  24. Urban, J., Vaisar, T., Shen, R., Lee, M. S. Lability of N-alkylated peptides towards TFA cleavage. Int J Pept Protein Res. 47, 182-189 (1996).
  25. Rzuczek, S. G., Gao, Y., Tang, Z., Thornton, C. A., Kodadek, T., Disney, M. D. Features of Modularly Assembled Compounds That Impart Bioactivity Against an RNA Target. ACS Chemical Biology. 8 (10), 2312-2321 (2013).
  26. Thern, B., Rudolph, J., Jung, G. Triphosgene as highly efficient reagent for the solid-phase coupling of N-alkylated amino acids—total synthesis of cyclosporin O. Tetrahedron Letters. 43, 5013-5016 (2002).
  27. Sleebs, M. M., Scanlon, D., Karas, J., Maharani, R., Hughes, A. B. Total Synthesis of the Antifungal Depsipeptide Petriellin A. J Org Chem. 76, 6686-6693 (2011).
  28. Vaisar, T., Urban, J. Gas-phase fragmentation of protonated mono-N-methylated peptides. Analogy with solution-phase acid-catalyzed hydrolysis. Journal of Mass Spectrometry. 33, 505-524 (1998).
  29. Creighton, C. J., Romoff, T. T., Bu, J. H., Goodman, M. Mechanistic studies of an unusual amide bond scission. Journal of the American Chemical Society. 121, 6786-6791 (1999).
  30. Sewald, N., Sewald, N. Efficient, racemization-free peptide coupling of N-alkyl amino acids by using amino acid chlorides generated in situ–total syntheses of the cyclopeptides cyclosporin O and omphalotin A. Angewandte Chemie (International ed. in English). 41, 4661-4663 (2002).
  31. Astle, J. M., et al. Seamless Bead to Microarray Screening: Rapid Identification of the Highest Affinity Protein Ligands from Large Combinatorial Libraries. Chem Biol. 17, 38-45 (2010).
  32. Strohalm, M., Kavan, D., Novak, P., Volny, M., Havlicek, V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal Chem. 82, 4648-4651 (2010).

Play Video

Cite This Article
Gao, Y., Kodadek, T. Split-and-pool Synthesis and Characterization of Peptide Tertiary Amide Library. J. Vis. Exp. (88), e51299, doi:10.3791/51299 (2014).

View Video