これは、外部共振器型ダイオード部品の選択や光学的アライメントを含むレーザー(ECDLs)、だけでなく、原子物理学の分野でのアプリケーションのための周波数基準分光法とレーザ線幅測定の基礎を構築し、診断を導くための教育紙である。
1980年代後半にその開発以来、安価で信頼性の高い外部共振器ダイオードレーザー(ECDLs)は原子物理研究室1,2の主力レーザーのような複雑で高価な伝統的な染料とチタンサファイアレーザーを交換した。その汎用性と、1,2冷却吸収分光法やレーザーなどのアプリケーションで原子物理学全体で多作の使用は、それが不可欠入ってくる学生がこれらのレーザのしっかりと実践的な理解を得るようになります。この公報は、コンポーネントのアップデート、ウィーマン3で独創的な研究に基づいて構築され、ビデオチュートリアルを提供する。 ECDLの設定、周波数ロックと性能評価について説明する。部品の選択とダイオードと格子の両方の適切な取り付けについての議論、キャビティ内のモード選択に影響を与える要因、最適な外付け帰還のための適切な配置、粗調整と微周波数に敏感な測定のための光学系のセットアップ、レーザーlockiの概要ngの技術は、レーザ線幅の測定が含まれる。
原子の量子状態を測定し、操作することは、原子物理学の中心にあり、原子の電子状態との間の特定の遷移に対処する能力が必要です。例えばルビジウム、一般的なはるかに使用するアルカリ原子を考えてみましょう。ここでは、地面を結合する光の波長と第一励起電子状態は、〜〜のため、自然放出に780 nmの(384テラヘルツ)と励起状態の寿命である26 6 MHzの4の吸収線幅を与えるNSEC。したがって、108における少なくとも一部の周波数安定度を有する光源を確実この遷移に対処するために必要とされる。
ECDLs、色素レーザーやチタンサファイアレーザーの開発は、通常、原子物理学のために使用された前に。これらは、大きな帯域幅にわたって光利得を提供し、したがって、原子遷移に重なるように調整することができる、大規模で高価な、複雑なシステムである。安く、簡単なダイオードレーザー設計WIこれらの利得媒体に取って代わる可能性所望の波長に一致するバンドギャップ番目の1980年代初めの1,2に認識された。シンプルな、100 kHzの線幅を達成デザインを構築しやすいがよく、1990年代初め3,5,6が理解し、共通の場所ました。多くの異なる構成やデザインは、長所と短所をそれぞれ実証されている。おそらく、最も一般的な構成は、リトロー3,5,7,8とリットマン9の構成です。この議論は、図1(a)に示す最も簡単な、リトロー構成に焦点を当てています。
同調機構の数は、同時にレーザ周波数において高い精度を達成するために使用される。まず、ダイオードが達成可能な動作温度で所望の波長で十分な利得を製造バンドギャップを有する必要とされる。典型的なレーザーダイオードは、数ナノメートル(テラヘルツ)以上のゲインを持つことになります。第二に、反射型の回折格子では、所望のダイオードに光フィードバックを提供するように調整角度である波長。回折格子に依存して、ダイオードは、フォーカスレンズが使用され、それらの配向、格子は、典型的には50〜100ギガヘルツの周波数範囲を選択する。レーザーは、(ダイオード後端面と格子の間)外部レーザキャビティとの共振波長で発振します。波長にわたってこのキャビティ長を同調レーザは、cは 、光及びLの速度である格子利得ピークの周りに自由スペクトル範囲の(c /(2 L))にわたって調整することができるため、共振器長であり、典型的には1 – 5センチメートル(FSR 3月15日ギガヘルツ)。 2キャビティモードがピーク格子帰還波長から同様の波長である場合には、レーザーは、マルチモードを実行することができる。発振キャビティモードは、その隣接モードより利得ピークからさらに同調されるように、レーザ意志モードホップが同調範囲を制限する。グレーティングモードに対する空洞モードの動作は、図3に見ることができる。モードホップフリー同調範囲はECDLのための主要な性能指標である。同時に格子角度と共振器長を調整することにより、8はるかに簡単に配置し、スペクトルの特徴にロックすること、モードホップのない多くの自由スペクトル範囲にわたって連続的に調整することが可能である。止するためのキャビティの光路長の電子同調がピエゾアクチュエータ( 図1A)(走査バンド幅約1 kHz)を用いて、グレーティング角度/位置を調整すると、主屈折率を変調電流ダイオードをチューニングするの組み合わせによって達成することができるダイオード(走査帯域幅≥100 kHzの)のインデックス。利得媒体レーザダイオードではなく、反射防止(AR)コーティングされた利得チップを使用すると、100〜200ギガヘルツの典型的な自由スペクトル範囲を有することができるレーザダイオード内部空洞応答を添加するさらなる合併症を加算する。この場合、空洞は格子からの応答に一致するように調整された温度にする必要があります。レーザダイオードではなく、ARコーティングされたゲインチップを使用すると、劇的にモードホップフリーのtを減少させる同期のチューニングダイオード電流または温度を達成するための手段がない限りuning範囲。最後に、100 kHzの細心の注意よりも優れた線幅を達成するために、他のノイズ源を除去するために支払わなければならない。これは音響振動を最小限に抑えるためにマウントの慎重な機械設計を必要とする、 のMKレベルの温度安定化、≤30 nAのレベルでのダイオードの電流安定性と、すべてのロック10をループのゲインを慎重にチューニングを実効値 。アプリケーションのための適切な電子機器を選択すると、レーザーや光学系の設計と同様に重要です。ダイオード·コントローラおよび仕様のリストを表1に見出すことができる。
安定したレーザ発振が達成されたら、次の要件は、原子転移、光キャビティ又は他のレーザのような基準にレーザ周波数をロックすることである。これは本質的に周波数のノイズを排除し、このような小さな温度変動などの低速のドリフトの影響を除去ロックループの帯域幅内。特定の参照システムの各々は、適した、誤差信号を得るために開発されている技法をロックする無数がある。つのレーザをロックするための位相誤差信号は、ビームスプリッタの2つのレーザを混合することにより得ることができる。パウンド-ドホール11、チルトロック12は、空洞にロックするために使用することができます。電流変調10と組み合わせて、原子吸光ラインDAVLL 13以上の飽和吸収分光法3,14にロックするには、ゼーマン変調10、チルトロック15を使用することができる。
蒸気セルにおける飽和吸収のゼーマン変調を用いたルビジウム遷移ECDLのロックが、ここで説明する。低強度のビームは、室温でルビジウム蒸気セルを通過し、周波数は780nmの原子遷移の近傍に同調されている場合、ドップラーの数が〜500MHzの広い吸収特徴を広げむしろ6 MHz幅の自然線幅(自然とドップラー線幅の計算は、フット16に記載されています)よりも観察される。しかし、このビームがレトロ反映されている場合はゼロ縦速度と原子はすでに部分的に、最初のパス17によって励起されたように、第2のパスが共鳴にあまり吸収を持つことになります。他の周波数は、各パスで異なる速度集団によって吸収されるので、吸収が飽和しないであろう。このようにして、ドップラーに重ね見かけの透過機能を得ることができる天然の線幅は約幅遷移の吸収を広げる。これはにロックするシャープな絶対的な周波数基準を提供します。原子遷移の周波数は、基準セルの磁場の大きさをディザリングすることによってゼーマン効果を用いて変調されてもよい。好適な均一磁場は、 図5に示すように、ソレノイドセットアップを使用して製造することができる。電子混合飽和吸収送信と変調波形は、ダイオード電流を調整するために使用されるピエゾ電圧を調整するために統合することができるエラー信号を生成する。従って、レーザは、レーザ周波数を変調することなく遷移にロックされてもよい。
ECDLの線幅は、一般的に、ビームスプリッタ18に同じ型の2つの周波数同期レーザを干渉することによって測定されます。レーザ間のビート周波数は次いで、高速フォトダイオードとRFスペクトラム·アナライザを用いて測定される。ロック·ループ帯域幅を超えた雑音スペクトルは、プロファイルフォークト(ガウスとローレンツの畳み込み)に取り付けられている。異なるレーザからのノイズは、直交に追加します。 2同等のレーザの場合、これは√の嵌合線幅を(2)倍、単一のレーザ線幅を提供します。レーザはECDLから予想されるよりも著しく小さい公知の線幅で使用可能であり、それはEの同調範囲内にある場合CDLは、その代わりに使用することができる。一般的に線幅を測定するために使用される別の方法は、ビームの一部は、ファイバなどの光遅延線に沿って送信され、次にレーザーをビームスプリッタに混合される遅延自己ホモダイン技法19,20である。この技術は、被測定レーザのコヒーレンス長よりも長い遅延に依存する。これは、ノイズの多いレーザーに適していますが、100 kHzの線幅レーザー用のコヒーレンス長は、非現実的になり始めるの周りに3キロです。代替的に、飽和吸収セル又はファブリペローキャビティにおける原子の遷移は、レーザ線幅測定のための周波数基準を提供するために使用することができる。このシステムでは、レーザ周波数は、エーテルの直線部分ではなく、周波数をスキャンすることができより飽和吸収またはファブリペロー共振に座ってする必要があります。フォトダイオード上の信号ノイズを測定し、共振線幅を知ることにより、高周波ノイズを求めることができる。リチウムの下限newidth測定は、次いで、透過共振の勾配によって制限される。
より高次の存在は、レーザ発振モードがRFスペクトラム·アナライザを用いて自由スペクトル範囲の周波数における強度雑音を見ることによって、またはそれ以上の自由スペクトル分解能で走査ファブリペローまたは光スペクトルアナライザを使用することによってチェックすることができるECDLの範囲。粗同調範囲は、格子を用いて限界を横切ってレーザをチューニングしながら(波長計、モノクロメータ、又は、光スペクトラムアナライザを用いて)波長の関数として電力を測定することによって測定することができる。モードホップフリー同調範囲は、一般に、モードホップの周波数が不連続ジャンプとして検出することができる走査型ファブリ·ペロー共振器を用いて測定される。
この公報は、レーザ線幅の測定を生成するために整列し、周波数ロックを通じて解体しECDLから移動する方法を示しています。機械設計などのPIDサーボ、ダイオード·ドライバ、および温度コントローラなどの電子機器の設計では、ここで議論するにはあまりにも専門的であるが、総合的に参照された出版物1,3,5で議論されてきた。
ダイオードECDL年代は原子物理学ラボで定番となっているが、これらのクレビスが到達できる種と遷移が制限されています。多くの進歩は、しかしながら、現在多くのギャップは、特にUVに残る系レーザダイオードの波長範囲を広げるてなされたものである。 ECDLシステムの電力制限は、アプリケーションを制限し続けています。裸シングルモード·ダイオードはμWattsからミリワットの100のへの電力の範囲である。さらに、テーパ増幅器は、シングルモードレーザ総電力を増加させるECDL系に添加することができるワットレベルまで。ワットまたは他の波長よりもはるかに大きいシングルモード·パワーが必要な場合は別のレーザ·アーキテクチャが必要とされる。これらは、ファイバレーザ26,27例えばTiSaphレーザなどの固体レーザ、またはそれらが非線形周波数変換に依存することができるようなラマンレーザーのような27を処理し、四光波混合、和周波発生、または光パラメトリック発振器を含む。
この出版物は、原子蒸気セルに依存しているロック機構に焦点を当てています。原子物理学の単純なガラス蒸気セル内の多くのアプリケーションでは、ここで説明したように、使用できない場合があり、そのようにはYbのような種の場合である。様々な種で基準試料を得るための多くの他の技術は、例えば、ホット原子ビーム、放電ランプ、緩衝ガス·セル、ヨウ素細胞、およびスパッタリング細胞として実証されている。
このレーザシステムの設計は、本質的に≈30 kHzの2の線幅に制限される8、通常は100kHzに近い。アプリケーションでは、26が必要な狭い線幅の他安定化技術や代替レーザ設計を必要とする場合。
光学系での作業時はいつでも、清潔さが最も重要である。最初に導入され、手袋を誤って光学面に触れないように着用して光学部品を取り扱うされる際には、お勧めします。視神経に傷がされた場合には、レーザ·システムでは使用しないでください。ほとんどの場合、指紋や埃を有する光学系がそれぞれアセトンまたは圧縮空気で洗浄することができる。光学面内の任意の欠陥は、システムに損失や潜在的にノイズを導入しますことができます。光学マウントは、すべての回で、光学ベンチに固定する必要があり、しっかりと所定の位置に一度ダウンしてボルトで固定する必要があります。
例えば、波長板と偏光ビームスプリッタ等の光学部品を整列させるとき、光は、光学面に垂直入射付近にあることを確認しながら、AVO背中のレーザーに反射をiding。これらの光学素子の挙動は理想から更になり、さらに°入射角として90から外れる。収差を最小限に抑え、開口数の光を最大化するためには、常にレンズの中心を通過し、レンズに対して垂直である必要があります。対照的に、気相セルは、エタロン効果を回避するために、入射ビームに対してわずかな角度で配置されるべきである。このような理由から、多くの蒸気セルは非平行端面で製造されています。
ここで使用されるレーザーは、クラス3Bです。でも、浮遊反射が眼の損傷の可能性があります。このタイプのレーザーでの仕事は、レーザーの危険性を熟知し訓練を受けた者が行うべきである。レーザー安全メガネを常に着用する。光学的アライメントのための任意のレーザーのパスへの直接見ておらず、光学部品オフ危険な鏡面反射を生成しないようするために特別な注意を取ることはない。常に積極的にビームラインのUSIを終了ビームダンプngの。
The authors have nothing to disclose.
Laser Diode (Rubidium, 780nm) |
Roithner | ADL-78901TX | Various wavelengths, powers, case sizes and AR coatings are available (Thor Labs, Eagle Yard Photonics, Rothnier) |
Diffraction Grating (Rubidium, 780nm) |
Newport | 05HG1800-500-1 | Holographic or rullered (Optional blazing) (Thor Labs, Newport) |
Viewing Card | Thor Labs | VRC5 | Infared viewing card |
Diode Lens | Thor Labs | C330TME-B | Coated for 780 nm |
Glass Wedge | Thor Labs | PS814 | 10 ° wedge |
1/2 Waveplate | Thor Labs | WPH10M-780 | 780 nm |
1/4 Waveplate | Thor Labs | WPQ10M-780 | 780 nm |
Rotation mounts | Thor Labs | RSP1C | |
PBS | Thor Labs | PBS252 | 780 nm |
Isolator | Thor Labs | IO-5-780-HP | |
Vapor Cell | Thor Labs | GC25075-RB | Rubidium |
Photo Detector | Moglabs | PDD-001-400-1100-λ | |
Scope | Tektronix | TDS1001B | |
Wavemeter | Yokogawa | AQ-6515A | We use an optical spectrum analyzer but a cheaper wavemeter would also be sufficient |
Electronic spectrum analyzer | Agilent | E4411B | |
IR Viewer | FJW Optical Systems Inc | 84499A-5 | Infared viewer |