Биопринтер был использован для создания узорной гидрогелей на основе жертвенной форме. Пресс-форма полоксамер был засыпан со вторым гидрогель и затем элюировали, оставляя пустот, которые были заполнены третий гидрогеля. Этот метод использует быструю элюирования и хорошие печатные полоксамера генерировать сложные архитектуры из биополимеров.
Bioprinting является новой технологией, которая имеет свои истоки в отрасли быстрого прототипирования. Различных процессов печати можно разделить на контакт Bioprinting 1-4 (экструзия, падение пера и мягкой литографии), бесконтактные Bioprinting 5-7 (лазер прямого переноса, струйного осаждения) и лазерных технологий, таких как два фотона фотополимеризации 8. Она может быть использована для многих приложений, таких как тканевой инженерии 9-13, биосенсор микротехнологий 14-16 и в качестве инструмента для ответа на основные биологические такие вопросы, как влияние совместного культивирования клеток различных типов 17. В отличие от обычных фотолитографическая или мягкой литографических методов экструзии Bioprinting имеет то преимущество, что она не требует отдельной маски или печать. Использование САПР, конструкция структуры могут быть быстро изменена и скорректирована в зависимости от требований оператора. Это делает Bioprinting более гибкими, чем литографии на основеподходов.
Здесь мы показываем, печати жертвенного формы для создания мульти-материал 3D структуры с использованием массива основных направления, на гидрогеля в качестве примера. Эти колонны может представлять полые структуры сосудистой сети или труб внутри трубопровода руководство нерва. Материал, выбранный для жертвенного форма была полоксамер 407, thermoresponsive полимер с превосходными свойствами печати, который является жидким при 4 ° С и твердый выше его температуры гелеобразования ~ 20 ° C в течение 24,5% вес / объем решений 18. Это свойство позволяет полоксамер основе жертвенный форму, чтобы элюировать по требованию и имеет преимущества по сравнению медленное растворение твердого материала, особенно для узких геометрий. Полоксамер был напечатан на Предметные стекла для создания жертвенной форме. Агарозы пипеткой в пресс-форму и не охлаждается до желатинизации. После элюирования полоксамер в ледяной воде, пустоты в форме агарозном были заполнены альгинат метакрилата зрIKED с FITC меченого фибриногена. Пустоты заполнены затем были сшиты с УФ и конструкцию, полученную с использованием флуоресцентного микроскопа.
Тканевая инженерия подходы добились значительного прогресса за последние годы по отношению к регенерации тканей и органов человека 19,20. Тем не менее, до сих пор в центре внимания тканевой инженерии не было часто ограничивается тканями, которые имеют простую структуру или малые размеры таких как мочевой пузырь или 21,22 кожи 23-25. В организме человека, однако, содержит множество сложных трехмерных ткани, где клетки и внеклеточной матрицы размещены в пространственно определенным образом. Для изготовления этих тканей, метод требуется, чтобы можно поместить клетки и внеклеточной матрицы леса в трехмерной конструкции в заданных позициях. Bioprinting имеет потенциал, чтобы быть такой техники, где видение изготовления сложных трехмерных тканей может быть реализована 10,11,26-28.
Bioprinting определяется как "использование процессов о передаче материала для формирования паттерна и монтаж биологически отнЭвант материалов – молекул, клеток, тканей и биоматериалов биоразлагаемых -. с заданной организацией для выполнения одной или нескольких биологических функций "4 Он включает в себя несколько различных методов, которые работают в разных разрешениях и масштабы длины, начиная от субмикронного разрешения двух -фотонные полимеризации 29 с разрешением 150 мкм до 420 мкм для экструзии печати 1,12,30. Ни одного материала или комбинации материалов будет удовлетворять требованиям каждого метода 31. для экструзии печати, ключевыми параметрами являются вязкость и время гелеобразования 32, где высокая вязкость и быстрого гелеобразования желательны.
3D печать это метод, который позволяет легко создавать формы для жертвенных создания сложной геометрии 30,33,34. Этот процесс основан на построении формы помощью быстрого прототипирования техники, таких как экструзия биопринтер. Создано жертвенной форме используетсяобразовывать сложные структуры из материалов, которые являются трудными для печати из-за их низкой вязкостью и медленного времени гелеобразования. Метод, представленный здесь, включает в себя создание жертвенный форму, состоящую из материала, который быстро растворяется при низкой температуре и можно экструдировать точно. Блок-сополимер поли (этиленгликоль) 99-поли (пропиленгликоль) 67-поли (этиленгликоль), 99 (также известный как Pluronic F127 или полоксамер 407) удовлетворяет этим требованиям. Он уже был использован и в измененном виде в экструзии печати 1, но, насколько нам известно, никогда не была использована для печати в его исходной версии из-за его нестабильности в жидких средах. Полоксамер 407 также показывает обратной тепловой реагировать поведение 18 т.е. изменениям из геля в золь при охлаждении. Самое главное, что может быть напечатано в сложные произвольно изогнутые структуры с очень высокой точностью. Это позволяет создание структурированной гидрогель сматериал с низкой вязкостью, в данном случае медленного желирующий агарозы, с помощью пипетки раствор в печатном жертвенный формы. Сочетание печати жертвенного формы с высокой точностью и быстрой элюции с литой структурированный гидрогель делает его быстрый и гибкий способ создания формы с различной геометрии без использования маски или штампа, как это часто требуется в литографических методов. Литой структурированный гидрогель может быть дополнительно заполнены другого материала, который не подходит для экструзии печати из-за его низкой вязкостью. Это в нашем случае низкой вязкости альгината метакрилатом решение. Здесь мы представляем метод обратного thermoresponsive формы для жертвенных гидрогель паттернов на примере столба массива.
Здесь мы приводим, в первый раз, использование thermoresponsive полимера на жертвенный формы, которые могут быть быстро элюировали в холодной воде за счет гель-золь переход полоксамер ~ 20 ° С. Скорость всего процесса полоксамером делает интересным для быстрого создания биополимеров структур, к…
The authors have nothing to disclose.
Мы благодарим Дебора Studer за помощь с биопринтер.
Работа финансировалась Европейским Союзом Седьмая рамочная программа (FP7/2007-2013) по гранту соглашения N ° NMP4-SL-2009-229292.
REAGENTS | |||
Poloxamer (Pluronic F127) | Sigma | P2443 | |
PBS | Invitrogen | 10010-015 | |
CAD software | regenHU | BioCAD | |
Alginate methacrylate | Innovent e.V Technologieentwicklung Jena | Synthesized by Innovent for the FP7 Project Nr NMP4-SL-2009-229292 | |
Fibrinogen From Human Plasma, Alexa Fluor 488 Conjugate | Invitrogen | F13191 | |
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) | Innovent e.V Technologieentwicklung Jena | Synthesized by Innovent for the FP7 Project Nr NMP4-SL-2009-229292 | |
Agarose | Lonza | 50004 | |
EQUIPMENT | |||
Bioprinter | regenHU | Biofactory | |
Valve | regenHU | 300 μm Nozzel Diameter | |
Needle | regenHU | 150 μm Inner Diameter | |
Zeiss Axioobserver with ApoTome | Zeiss | ||
UV Light Source | UVP | Blak-Ray B-100AP High Intensity UV Lamp | 100 W |