Обратимые добавлением пальмитат с белками является важным регулятором внутриклеточных белков торговли. Это представляет особый интерес в нейронах, где много синаптические белки palmitoylated. Мы используем простой биохимический метод для обнаружения palmitoylated белков в культивируемых нейронах, которые могут быть адаптированы для различных типов клеток и тканей.
Palmitoylation это пост-трансляционной модификации липидов с участием крепление 16-углеродной насыщенные жирные кислоты, пальмитат, чтобы остатков цистеина субстрата белков через лабильный тиоэфир связь [отзывы в 1]. Palmitoylation подложки белка повышает его гидрофобность, и, как правило облегчает торговлю на клеточные мембраны. Недавние исследования показали, palmitoylation одним из наиболее распространенных липидных модификаций в 1 нейронами, 2, предполагая, что пальмитат оборота является важным механизмом, с помощью которого эти клетки регулируют адресности и торговли белков. Идентификации и обнаружения palmitoylated субстратов может поэтому лучше нашего понимания белка торговли в нейронах.
Обнаружение белка palmitoylation в прошлом был технически затруднено из-за отсутствия консенсуса между подложкой последовательности белков, а также опора на метаболические labeliнг пальмитоил-белки с 3 H-пальмитат, времени биохимического анализа с низкой чувствительностью. Развитие ацил-биотин бирже (ABE) анализ позволяет более быструю и высокую чувствительность обнаружения palmitoylated белки 2-4, и является оптимальным для измерения динамических оборот пальмитата на нейрональных белков. Анализ ABE состоит из трех биохимических этапов (рис. 1): 1) необратимой блокады немодифицированных группы тиоловых цистеина использованием N-ethylmaliemide (NEM), 2) специфическое расщепление и разоблачение тиоловых групп palmitoylated цистеина путем гидроксиламина (HAM), и 3) селективная маркировки palmitoylated цистеина помощью тиоловых-реактивного биотинилирование реагента, биотин-BMCC. Очистка тиол-биотинилированных белков после ABE шаги были различны, в зависимости от общей цели эксперимента.
Здесь мы опишем метод, чтобы очистить palmitoylated белка в первичном гиппокампадр. нейронов начальной иммунопреципитации (IP) шаг, используя антитела, направленные против белков, а затем с помощью анализа ABE и западных промокательной непосредственно измерить palmitoylation уровня этого белка, который называется IP-ABE анализа. Низкая плотность культур эмбриональных нейронов гиппокампа крысы были широко используется для изучения локализации, функции и торговли нейронов белки, что делает их идеально подходит для изучения нейронных palmitoylation белка использованием IP-ABE анализа. IP-ABE анализа основном требуется стандартный IP и западных промокательной реагентов и ограничивается только наличием антител против целевой подложки. Этот анализ может быть легко адаптирована для очистки и обнаружения трансфицированных palmitoylated белков в клеточных культурах гетерологичного, первичных нейронов культур, полученных из различных тканей мозга мыши и крысы, и даже первичная ткань мозга сама.
IP-ABE анализа, представленные здесь, простой и очень чувствительный метод для обнаружения palmitoylated белков в культивируемых первичных нейронов гиппокампа, который обычно используется для стандартных биохимических методов. Это делает анализ легко адаптируется для лабораторий уже оснащены западных промокательной материалов. IP-ABE анализа сочетает в себе стандартный протокол иммунопреципитации, чтобы изолировать и обездвижить своего белка-мишени, а затем описанной ранее ABE химии 2-4 для быстрого выявления уровня пальмитата на подложке белка. Техника ABE имеет широкий спектр применения для изучения palmitoylated белков в различных тканях и клеточных линий, в том числе крупномасштабных пальмитоил-протеомных скрининг глобальных профилей palmitoylation, и быстрое обнаружение palmitoylation уровня одного белка-мишени.
Предыдущее описание ABE химии использовали различные методы лизис клетки и моющие средства извлечения нейронов прот2 Eins, 9, свободный тиол-блокады 10, 11, биотинилирование и очистки целевого белка 4, в зависимости от применения эксперимента. Кроме того пальмитата в нейронных результаты белки в их таргетинг на клеточные мембраны, и обнаружение palmitoylated доля белка-мишени будет требовать его извлечения из этих мембран. Ранее описанный ABE методологии использовались различные ионные 9 и неионные детергенты 8 до извлечения желаемого белков-мишеней, а также использование конкретного моющего средства зависит от белка-мишени и ее известные мембраны с торговлей людьми. Здесь мы используем неденатурирующем и неионогенных моющих средств IGEPAL CA-630 для извлечения palmitoylated белки, которые мы утверждена для добычи и обнаружения palmitoylated нейронов белки δ-катенина (рис. 2). Структура IGEPAL CA-630 включает в себя громоздкой и жесткой неполярных головной группы, которые ненарушать нативную конформацию белка или взаимодействий, но позволяет его связь с гидрофобными участками мембранных белков, связанных, тем самым присвоении смешиваемость с ними и позволяет их добычи. Многие нейронов белки локализованы в постсинаптической мембраны или пост-синаптические плотность синапсов должны быть извлечены при помощи IGEPAL CA-630, однако некоторые из них не может полностью растворить, и может потребовать использования различных неденатурирующем моющих средств, как Тритон Х-100, который имеет ранее использована для ABE химия 2, 8.
Несколько описаний ABE химии также используются различные тиол-реактивного биотинилирование реагента от молекулы мы описываем здесь, называется биотин-HPDP (Thermo Scientific), которая также требует различных способов очистки белков 4. Биотин-HPDP другой тиол-реактивный, maliemide конъюгированных биотин молекула, которая содержит дисульфидные связи в maliemide руку компоновщик, структурно-Differentiating его из биотин-BMCC, которые не содержат этот дисульфидных связей. После тиол-биотинилирования бесплатно или palmitoylated цистеина белка по биотин-HPDP, в результате дисульфидные связи между белком-мишенью и группа биотина может быть расщеплены за счет сокращения реагентов, чтобы освободить биотин группы и регенерации белков в его исходной форме, что делает биотинилирование Биотин по-HPDP переходных и обратимы. Таким образом, использование этого реагента биотинилирование требует очистки целевого белка авидина иммобилизованных реагентов, таких как покрытых стрептавидином шарики. Тем не менее, тиол-биотинилирования целевого белка биотин-BMCC, как мы описываем здесь, является стабильной и относительно постоянной, и требует очистки целевого белка антитела, направленные против цели, и иммобилизованными на сефарозе бисера. Оба ABE методы были ранее использованы для крупномасштабного экраны, и обнаружение palmitoylation одного белков 2, 8-10, 12 иIP-ABE анализа мы опишем здесь является оптимальной для быстрого обнаружения palmitoylation одного нейрона белки-мишени.
Подавляющее большинство сотовых palmitoylation связано с обратимой добавлением пальмитата в тиоловой группой цистеина (называется S-palmitoylation, которые мы обобщаем как «palmitoylation» в этом протоколе), однако очень ограниченная группа белков подвергается необратимым palmitoylation на глицин и остатков цистеина посредством формирования стабильной амидных связей, называемых N-palmitoylation 13. Одним из ограничений ABE химии является ее неспособность обнаружить N-palmitoylation благодаря стабильности амидной связи, и поэтому показ новой белка-мишени для palmitoylation должно быть подтверждено с помощью 3Н-пальмитат метаболических маркировке 1.
Как упоминалось ранее, IP-ABE анализ может быть легко адаптирована для изучения palmitoylation в белковых экстрактов из различных источников, в том числе переходsfected гетерологичных клеточных линий, основной ткани и первичных нейронов культур из различных областей мозга. IP-ABE анализа была использована для изучения palmitoylation достаточности мутировал цистеин-на-серин белков для определения местоположения palmitoylated цистеина по белку-мишени 8, для изучения динамической оборот пальмитата в синаптических белков в культивируемых нейронов в базальных условиях 10, и изменения в palmitoylation уровне нейронов белки после индукции нейронной активности 9. Чувствительность и адаптируемость IP-ABE анализа делают его идеально подходящим для изучения palmitoylation профилей нейронов белки, оптимальные для выявления динамических изменений в palmitoylation.
The authors have nothing to disclose.
Эта работа была поддержана грантами от Канадского института исследований в области здравоохранения MOP-восемьдесят одна тысяча сто пятьдесят-восемь.
Name of the Reagent | Company | Catalogue Number | Comments |
IGEPAL CA-630 | Sigma | I8896 | |
PMSF | Fluka | 93482 | |
Protease Inhibitor Cocktail | Roche Complete Mini | 11 836 153 001 | |
NEM | Sigma | E3876 | |
HAM solution | Sigma | 46780-4 | |
BCA Protein Assay Kit | Thermo Scientific | 23225 | Ensure compatibility with chosen detergent |
Protein G/A-coated sepharose beads | GE Healthcare | 17-6002-35 | |
Biotin-BMCC | Thermo Scientific | 21900 | |
Streptavidin-HRP | Thermo Scientific | 21126 | Reconstitute at 1 mg/ml in water |
Western Blot Stripping Buffer | Thermo Scientific | 21059 |