Summary

功能磁共振成像(fMRI)技术与听觉刺激鸣禽

Published: June 03, 2013
doi:

Summary

本文介绍了使用功能磁共振成像(fMRI)技术在鸣禽脑的听觉刺激的神经基板成像的优化过程。它描述的声音刺激,定位的主体和收购和后续分析fMRI的数据编制。

Abstract

神经生物学的鸟鸣声,人的讲话作为一个模型,是一个明显的行为神经科学的研究领域。鉴于电生理和分子生物学方法允许调查两种不同的刺激,一些神经元,或一个刺激大脑的大部分地区,血氧水平依赖(BOLD)的功能磁共振成像(fMRI)技术,可以结合两者的优点, 比较神经激活引起整个大脑的不同的刺激一次。 fMRI的鸣禽是具有挑战性的,因为他们的大脑体积小,因为他们的骨头,尤其是他们的头骨,包括众多的空气腔,诱导重要的敏感伪影。 BOLD功能磁共振成像梯度回波(GE)已成功地应用于鸣禽1-5(综述见6)。这些研究主要集中在小学和中学的听觉脑区,这是区域敏感性伪影。但是,因为进程内S弯超越这些地区可能会出现利益,需要全脑BOLD功能磁共振成像MRI序列使用不易受这些文物。这可以通过使用自旋回波(SE)BOLD功能磁共振成像7,8。在这篇文章中,我们描述了如何使用这个技术在斑胸草雀( 雀Taeniopygia),这是一个体重15-25克的小鸣禽广泛研究,行为神经科学的鸟鸣声。鸣禽的功能磁共振成像研究的主要议题是歌曲感知和歌曲学习。听觉性刺激弱大胆SE(GE)的功能磁共振成像序列的灵敏度,使得这项技术的实施非常具有挑战性的结合。

Protocol

1。听觉刺激的制备首先7T MR系统内部的孔中正在播放的同时记录声音刺激。该孔是一个密闭的空间,可以扭曲从而提高目标的听觉频率的听觉刺激。 图1示出孔增强和抑制由我们的鸟的头部的位置内磁铁的白噪声的录音所示的频率使用光纤麦克风(1160 Optimic,Optoacoustics)。为了弥补这个人工增强,均衡器函数被应用到每个刺激使用波达软件。对于我们的特定设置,使用以下参…

Representative Results

在这里,我们直观地呈现在斑胸草雀脑听觉刺激神经基板成功的成像程序的优化序列。首先,用于制备刺激听觉刺激的结果,在所描述的过程,可以并入一个ON / OFF块范式( 图2),并归一化,以消除潜在的声压水平的差异,可以唤起大脑中的不同的反应。准备斑胸草雀进行MRI扫描,并将其定位成孔磁铁( 图1),功能磁共振成像后可以被收购。此外,三维高分辨率图…

Discussion

在这份报告中,我们描述了一种优化方案的详细听觉刺激神经 ​​基板在麻醉的斑胸草雀体内表征。

在符合协议中,大多数脑功能激活的研究在大胆使用功能磁共振成像的动物,麻醉动物,在收购过程中。训练动物,打算让她们磁铁环境和研究期间的扫描仪的噪音也是可能的,但相当费时和具有挑战性的,因此很少采用。

虽然麻醉的生?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

支持这项研究是由研究基金会 – 佛兰德(FWO,项目数G.0420.02 G.0443.11N)的大力神基础(授予NR AUHA0012),协调一致的研究行动(GOA资金)从安特卫普大学的拨款,部分赞助EC – FP6项目DIMI,LSHB-CT-2005-512146和EC – FP6项目EMIL LSHC-CT-2004-503569 A.VdL。 G.DG和CP的博士后研究基金会 – 佛兰德(FWO)。

Materials

Name of the reagent/equipment Company Catalogue number Comments
Isoflurane anaesthetic Isoflo 05260-05
PC-Sam hardware/software SA-Instruments http://www.i4sa.com
Monitoring and gating system 1025
MR-compatible small rodent heater system Model 1025 compatible
Rectal temperature probe RTP-102B 7”, 0.044”
7T MR scanner Bruker Biospin PHS 70/16
Paravision software 5.1
Gradient Insert BGA9S 400 mT/m, 300A, 500V
Gradient Amplifiers Copley Co., USA C256
Transmit resonators Inner diameter: 72 mm, transmit only, active decoupled
Receiver antenna – 20 mm quadrature Mouse Head Receive only, active decoupled
WaveLab software Steinberg
Praat software Paul Boersma, University of Amsterdam http://www.praat.org
Non-magnetic dynamic speakers Visation, Germany HK 150
Fiber optic microphone Optoacoustics, Optimic 1160
Sound amplifier Phonic corporation MM 1002a
Presentation software Neurobehavioral Systems Inc.
MRIcro Chris Rorden http://www.cabiatl.com/mricro/mricro/
Statistical Parametric Mapping (SPM) Welcome Trust Centre for Neuroimaging 8 http://www.fil.ion.ucl.ac.uk/spm/

References

  1. Van Meir, V., et al. Spatiotemporal properties of the BOLD response in the songbirds’ auditory circuit during a variety of listening tasks. Neuroimage. 25, 1242-1255 (2005).
  2. Boumans, T., Theunissen, F. E., Poirier, C., Van Der Linden, A. Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI. The European Journal of Neuroscience. 26, 2613-2626 (2007).
  3. Boumans, T., et al. Functional magnetic resonance imaging in zebra finch discerns the neural substrate involved in segregation of conspecific song from background noise. Journal of Neurophysiology. 99, 931-938 (2008).
  4. Boumans, T., et al. Functional MRI of auditory responses in the zebra finch forebrain reveals a hierarchical organisation based on signal strength but not selectivity. PloS ONE. 3, e3184 (2008).
  5. Vignal, C., et al. Measuring brain hemodynamic changes in a songbird: responses to hypercapnia measured with functional MRI and near-infrared spectroscopy. Physics in Medicine and Biology. 53, 2457-2470 (2008).
  6. Van der Linden, A., Van Meir, V., Boumans, T., Poirier, C., Balthazart, J. MRI in small brains displaying extensive plasticity. Trends in Neurosciences. 32, 257-266 (2009).
  7. Poirier, C., Van der Linden, A. M. Spin echo BOLD fMRI on songbirds. Methods Mol. Biol. 771, 569-576 (2011).
  8. Poirier, C., Verhoye, M., Boumans, T., Van der Linden, A. Implementation of spin-echo blood oxygen level-dependent (BOLD) functional MRI in birds. NMR in Biomedicine. 23, 1027-1032 (2010).
  9. Poirier, C., et al. A three-dimensional MRI atlas of the zebra finch brain in stereotaxic coordinates. Neuroimage. 41, 1-6 (2008).
  10. Zhao, F., Wang, P., Kim, S. G. Cortical depth-dependent gradient-echo and spin-echo BOLD fMRI at 9.4T. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 51, 518-524 (2004).
  11. Harel, N., Lin, J., Moeller, S., Ugurbil, K., Yacoub, E. Combined imaging-histological study of cortical laminar specificity of fMRI signals. NeuroImage. 29, 879-887 (2006).
  12. Duong, T. Q., et al. Microvascular BOLD contribution at 4 and 7 T in the human brain: gradient-echo and spin-echo fMRI with suppression of blood effects. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 49, 1019-1027 (2003).
  13. Lee, S. P., Silva, A. C., Ugurbil, K., Kim, S. G. Diffusion-weighted spin-echo fMRI at 9.4 T: microvascular/tissue contribution to BOLD signal changes. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 42, 919-928 (1999).
  14. Uludag, K., Muller-Bierl, B., Ugurbil, K. An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. NeuroImage. 48, 150-165 (2009).
  15. Yacoub, E., et al. Spin-echo fMRI in humans using high spatial resolutions and high magnetic fields. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 49, 655-664 (2003).
  16. Keilholz, S. D., Silva, A. C., Raman, M., Merkle, H., Koretsky, A. P. Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 55, 316-324 (2006).
  17. Keilholz, S. D., Silva, A. C., Raman, M., Merkle, H., Koretsky, A. P. Functional MRI of the rodent somatosensory pathway using multislice echo planar imaging. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine. 52, 89-99 (2004).
  18. Goloshevsky, A. G., Silva, A. C., Dodd, S. J., Koretsky, A. P. BOLD fMRI and somatosensory evoked potentials are well correlated over a broad range of frequency content of somatosensory stimulation of the rat forepaw. Brain Research. 1195, 67-76 (2008).
  19. Kida, I., Yamamoto, T. Stimulus frequency dependence of blood oxygenation level-dependent functional magnetic resonance imaging signals in the somatosensory cortex of rats. Neuroscience Research. 62, 25-31 (2008).
  20. Poirier, C., Boumans, T., Verhoye, M., Balthazart, J., Van der Linden, A. Own-song recognition in the songbird auditory pathway: selectivity and lateralization. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 29, 2252-2258 (2009).
  21. Poirier, C., et al. Own song selectivity in the songbird auditory pathway: suppression by norepinephrine. PloS ONE. 6, e20131 (2011).
  22. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 412, 150-157 (2001).

Play Video

Cite This Article
Van Ruijssevelt, L., De Groof, G., Van der Kant, A., Poirier, C., Van Audekerke, J., Verhoye, M., Van der Linden, A. Functional Magnetic Resonance Imaging (fMRI) with Auditory Stimulation in Songbirds. J. Vis. Exp. (76), e4369, doi:10.3791/4369 (2013).

View Video