Summary

Terahertz Microfluidic एक समानांतर प्लेट Waveguide सेंसर का प्रयोग सेंसिंग

Published: August 30, 2012
doi:

Summary

terahertz आवृत्तियों के लिए एक अंडाकार waveguide समानांतर थाली ज्यामिति के आधार पर एक अपवर्तक सूचकांक संवेदक को लागू करने के लिए प्रक्रिया में वर्णित है यहाँ. विधि waveguide संरचना के गुंजयमान आवृत्ति में बदलाव की निगरानी के माध्यम से तरल पदार्थ की एक छोटी मात्रा के अपवर्तक सूचकांक के एक माप पैदावार

Abstract

Refractive index (RI) sensing is a powerful noninvasive and label-free sensing technique for the identification, detection and monitoring of microfluidic samples with a wide range of possible sensor designs such as interferometers and resonators 1,2. Most of the existing RI sensing applications focus on biological materials in aqueous solutions in visible and IR frequencies, such as DNA hybridization and genome sequencing. At terahertz frequencies, applications include quality control, monitoring of industrial processes and sensing and detection applications involving nonpolar materials.

Several potential designs for refractive index sensors in the terahertz regime exist, including photonic crystal waveguides 3, asymmetric split-ring resonators 4, and photonic band gap structures integrated into parallel-plate waveguides 5. Many of these designs are based on optical resonators such as rings or cavities. The resonant frequencies of these structures are dependent on the refractive index of the material in or around the resonator. By monitoring the shifts in resonant frequency the refractive index of a sample can be accurately measured and this in turn can be used to identify a material, monitor contamination or dilution, etc.

The sensor design we use here is based on a simple parallel-plate waveguide 6,7. A rectangular groove machined into one face acts as a resonant cavity (Figures 1 and 2). When terahertz radiation is coupled into the waveguide and propagates in the lowest-order transverse-electric (TE1) mode, the result is a single strong resonant feature with a tunable resonant frequency that is dependent on the geometry of the groove 6,8. This groove can be filled with nonpolar liquid microfluidic samples which cause a shift in the observed resonant frequency that depends on the amount of liquid in the groove and its refractive index 9.

Our technique has an advantage over other terahertz techniques in its simplicity, both in fabrication and implementation, since the procedure can be accomplished with standard laboratory equipment without the need for a clean room or any special fabrication or experimental techniques. It can also be easily expanded to multichannel operation by the incorporation of multiple grooves 10. In this video we will describe our complete experimental procedure, from the design of the sensor to the data analysis and determination of the sample refractive index.

Protocol

1. सेंसर डिजाइन और निर्माण एक या अधिक एकीकृत cavities (या "grooves") के साथ एक waveguide समानांतर प्लेट डिजाइन. आंकड़े 1 और 2 देखें. ज्यामिति कि हमारे पिछले 8,9 प्रकाशनों में दिए गए पर आधारित हो सकता है …

Discussion

यह ध्यान दिया जाना चाहिए कि परीक्षण के अंतर्गत तरल के अपवर्तक सूचकांक एक व्यापक बैंडविड्थ पर गुहा प्रतिध्वनि की आवृत्ति पर ही निर्धारित नहीं है, करना चाहिए. यह कुछ अलग फायदे हैं. सबसे पहले, हालांकि हमा?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

इस परियोजना के हिस्से में राष्ट्रीय विज्ञान फाउंडेशन द्वारा और संपर्क कार्यक्रम के माध्यम से वायु सेना अनुसंधान प्रयोगशाला द्वारा समर्थित किया गया.

Materials

Name of the reagent Company Catalogue number Comments (optional)
10 μl syringe Hamilton 80314 High precision syringe
Liquid alkanes Acros Organics Samples for calibration and testing

No specific equipment is required. Suitable test materials and solvents are left to the experimenter’s discretion. The high-precision syringes used in this procedure are listed in the table below, but the experimenter may wish to use syringes of a different volume or design, including digital syringes for improved accuracy. The test alkanes used in this experiment are also listed.

References

  1. Kuswandi, B., Nuriman, ., Huskens, J., Verboom, W. Optical sensing systems for microfluidic devices: A review. Ana. Chim. Acta. 601, 141-155 (2007).
  2. Zhu, H., White, I. M., Suter, J. D., Zourob, M., Fan, X. Integrated refractive index optical ring resonator detector for capillary electrophoresis. Anal. Chem. 79, 930-937 (2007).
  3. Kurt, H., Citrin, D. S. Coupled-resonator optical waveguides for biochemical sensing of nanoliter volumes of analyte in the terahertz region. Appl. Phys. Lett. 87, 241119 (2005).
  4. Debus, C., Bolivar, P. H. Frequency selective surfaces for high sensitivity terahertz sensing. Appl. Phys. Lett. 91, 184102 (2007).
  5. Harsha, S. S., Laman, N., Grischkowsky, D. High-Q terahertz Bragg rsonances within a metal parallel plate waveguide. Appl. Phys. Lett. 94, 091118 (2009).
  6. Mendis, R., Mittleman, D. M. Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications. Optics Express. 17, 14839-14850 (2009).
  7. Mendis, R., Mittleman, D. M. An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation. JOSA B. 26, A6-A13 (2009).
  8. Astley, V., McCracken, B., Mendis, R. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides. Opt. Lett. 36, 1452 (2011).
  9. Mendis, R., Astley, V., Liu, J., Mittleman, D. M. Terahertz microfluidic sensor based on a parallel-plate-waveguide resonant cavity. Appl. Phys. Lett. 95, 171113 (2009).
  10. Astley, V., Reichel, K., Jones, J., Mendis, R. Terahertz multichannel microfluidic sensor based on parallel-plate waveguide resonant cavities. Appl. Phys. Lett. , (2012).
check_url/kr/4304?article_type=t

Play Video

Cite This Article
Astley, V., Reichel, K., Mendis, R., Mittleman, D. M. Terahertz Microfluidic Sensing Using a Parallel-plate Waveguide Sensor. J. Vis. Exp. (66), e4304, doi:10.3791/4304 (2012).

View Video