Source: Furman, J. L., et al. Sensitive Detection of Proteopathic Seeding Activity with FRET Flow Cytometry. J. Vis. Exp. (2015).
The video demonstrates a fluorescence resonance energy transfer (FRET) flow cytometry assay to detect the seeding activity of protein aggregates isolated from biological samples. Mammalian cells expressing tau reporter proteins are incubated with liposome transduction complexes containing tau seeds. These seeds mediate the aggregation of the reporter proteins, leading to generating a FRET positive signal in the flow cytometer.
NOTE: This protocol emphasizes the use of FRET flow cytometry for detecting seeding activity from mouse biological samples. It is also compatible with recombinant fibrils and human biological samples. Mouse euthanasia and brain harvesting was performed in accordance with IACUC-approved procedures.
1. Brain Extraction
2. Preparation of Biological Seed Material
3. Replating Biosensor Cells
NOTE: Use four cell lines for this assay: HEK 293T (cell line #1), RD-P301S-CFP (cell line #2), RD-P301S-YFP (cell line #3), and RD-P301S-CFP/YFP (cell line #4). Please see reference Table 1 for each cell line's contribution to the assay.
4. Treating Cells
NOTE: The following day, when tau biosensor cells are 60-65% confluent, prepare seed transduction complexes as follows:
5. Harvesting Cells for FRET Flow Cytometry
NOTE: Before harvesting cells—generally 24-48 hr post-treatment—it is possible to get a preliminary readout of seeding activity using the green fluorescent protein (GFP) filter on a standard inverted fluorescence microscope. Cells treated without seed material (i.e., empty liposomes) will show diffuse fluorescence, whereas cells treated with seed material will show intense punctate and reticular intracellular inclusions (Figure 1A–B).
6. FRET Flow Cytometry
NOTE: Use a flow cytometer such as the MACSQuant VYB, which is equipped with FRET-compatible laser lines and filter sets (Table 2). For each step within this section, click the well of interest using the software's 96 well template, and click "play" to begin sample uptake and flow. Make plots or statistics tables by clicking the 'new analysis window' icon. Change axis parameters on individual bivariate plots by clicking the title on either the X or Y axis and selecting the appropriate filter. To shift cell populations or fluorescence signals, increase or decrease the voltages associated with the appropriate filters. With this instrument, run <1,000 events/sec to ensure accurate single-cell monitoring.
Table 1: Cell lines used with FRET flow cytometry. HEK 293T cells are used for flow cytometry setup. CFP single-positive cells are used for compensation (*). YFP single-positive cells are used to eliminate false FRET signal due to direct activation of YFP by 405 nm excitation. CFP/YFP dual-positive cells are FRET-compatible and serve as the biosensor cells.
Table 2: Flow cytometer laser and filter settings.
Figure 1. FRET flow cytometry sensitively detects tau seeding activity. Monoclonal HEK 293T cells expressing tau-RD-CFP/YFP were transduced with recombinant or biological samples, incubated for 24-48 hr, and analyzed on a single cell basis using flow cytometry (A). Unstimulated cells maintain tau-RD in a monomeric state (B), whereas cells treated with seed-containing material display prominent inclusions (C). Quantitative assessment (mean ± S.E.M.) of seeding activity shows that FRET flow cytometry is sensitive to femtomolar concentrations (monomer equivalent) of recombinant seed material and detection spans three orders of magnitude (D). Monomer equivalent represents the total amount of protein contained within the fibrillization reaction and does not correct for the incomplete incorporation of monomer into aggregated material. Thus, the concentration of actual aggregates (seeds) must be less than or equal to its 'monomer equivalent'. *Modified from Holmes and Furman et al.
Figure 2. Gating strategy for FRET flow cytometry. Cell population (A) and singlet/doublet (B) gates are drawn with standard flow cytometry methodology. A false FRET gate (C) is drawn from YFP single-positive cells to eliminate YFP bleedthrough into the FRET filter. A FRET gate (D) is constructed from empty liposome-treated cells, such that background FRET is ≥1%. A population shift into the FRET gate appears following treatment with seed-positive material (E) and the shift becomes increasingly prominent with higher amounts of seed material (F). Final readouts include: percent FRET positivity, median fluorescence intensity (MFI) of FRET-positive events, and the integrated FRET density (Integrated FRET Density = Percent positive cells * MFI).
The authors have nothing to disclose.
TBS | Sigma | T5912 | |
Complete Protease Inhibitors (EDTA-free) | Roche | 4693159001 | |
Cryo-vials | Sarstedt | 72.694.006 | |
Analytical Balance | Mettler Toledo | XSE 105DU | |
Weighing Boats | Fisher Scientific | 13-735-743 | |
15 mL conical tube | USA Scientific | 1475-0501 | |
Omni Sonic Ruptor Ultrasonic Homogenizer | Omni International | 18-000-115 | |
Micro-Tip for Ultrasonic Homogenizer | Omni International | OR-T-156 | |
2-Propanol | Fisher Scientific | A451 | |
Noise Cancelling Ear Muffs | Fisher Scientific | 19-145-412 | |
Kimwipes | Fisher Scientific | S47299 | |
1.5 mL tubes | USA Scientific | 1615-5510 | |
Microcentrifuge | Eppendorf | 5424 000.215 | |
DPBS | Life Technologies | 14190-136 | |
DMEM | Life Technologies | 11965-084 | |
Fetal Bovine Serum | HyClone | SH30071.03 | |
Penicillin-Streptomycin | Life Technologies | 15140-122 | |
GlutaMax | Life Technologies | 35050-061 | |
Trypsin-EDTA | Life Technologies | 25300-054 | |
50 mL Conical Tubes | Phenix Research | SS-PH15 | |
25 mL reagent resevoirs | VWR | 41428-954 | |
Multi channel pipet | Fisher Scientific | TI13-690-049 | |
96 well flat bottom plates | Corning | 3603 | |
Opti-MEM | Life Technologies | 31985-070 | |
Lipofectamine 2000 | Invitrogen | 11668019 | |
96 well round bottom plates | Corning | 3788 | |
16% Paraformaldehyde | Electron Microscopy Sciences | RT 15710 | |
PBS | Sigma-Aldrich | P5493 | |
EDTA | Sigma-Aldrich | ED2SS | |
HBSS | Life Technologies | 14185-052 | |
Sorvall ST 40 Centrifuge | Thermo Scientific | 75004509 | |
BIOLiner Swinging Bucket Rotor | Thermo Scientific | 75003796 | |
Hemacytometer | VWR | 15170-172 | |
MACSQuant VYB Flow Cytomter | Miltenyi Biotec | 130-096-116 | |
Chill 96 Rack | Miltenyi Biotec | 130-094-459 | |
Flow Jo analysis software | Flow Jo | ||
20 uL pipet tips | Rainin | GPS-L10 | |
200 uL pipet tips | Rainin | GPS-250 | |
1 mL pipet tips | Rainin | GPS-1000 | |
200 uL pipet tips | USA Scientific | 1111-1800 | |
5 mL serological pipett | Phenix Research | SPG-606180 | |
10 mL serological pipett | Phenix Research | SPG-607180 | |
25 mL Serological pipett | Phenix Research | SPG-760180 |