In this video we use an adenovirus carrying the Cre recombinase gene to infect primary mouse embryonic fibroblasts carrying a floxed Rac1 allele.
The ability to genetically remove specific components of various cell signalling cascades has been an integral tool in modern signal transduction analysis. One particular method to achieve this conditional deletion is via the use of the Cre-loxP system. This method involves flanking the gene of interest with loxP sites, which are specific recognition sequences for the Cre recombinase protein. Exposure of the so-called floxed (flanked by loxP site) DNA to this enzyme results in a Cre-mediated recombination event at the loxP sites, and subsequent excision of the intervening gene3. Several different methods exist to administer Cre recombinase to the site of interest. In this video, we demonstrate the use of an adenovirus containing the Cre recombinase gene to infect primary mouse embryonic fibroblasts (MEFs) obtained from embryos containing a floxed Rac1 allele1. Our rationale for selecting Rac1 MEFs for our experiments is that clear morphological changes can be seen upon deletion of Rac1, due to alterations in the actin cytoskeleton2,5. 72 hours following viral transduction and Cre expression, cells were stained using the actin dye phalloidin and imaged using confocal laser scanning microscopy. It was observed that MEFs which had been exposed to the adeno-Cre virus appeared contracted and elongated in morphology compared to uninfected cells, consistent with previous reports2,5. The adenovirus method of Cre recombinase delivery is advantageous as the adeno-Cre virus is easily available, and gene deletion via Cre in nearly 100% of the cells can be achieved with optimized adenoviral infection.
Thawing cells
Passaging cells
Counting and plating cells onto cover slips
Virus Transduction
Representative Results
Cells were visualised by staining with the actin dye phalloidin (for imaging purposes only) and imaged using the Leica TCS-SP5 multiphoton confocal laser scanning microscope at the Advanced Analysis Centre at the University of Guelph. Figure 1 shows the contracted and elongated morphology of the Rac1flox/flox cells that were exposed to adeno-Cre virus compared to the same cells not exposed to virus.
Figure 1. Comparison between Rac1flox/flox cells infected with adeno-Cre virus (left) compared to uninfected cells from the same source (right).
The accompanying video exemplifies how a recombinant virus can be used to excise a specific gene in vitro using Cre recombinase. The development of this protocol however did reveal some particular points worth addressing.
Beyond the examination of signalling cascades in culture, the adeno-Cre approach has also been employed in vivo to conditionally remove genes from experimental animals3,4, and to label specific populations of cells within an organism6. The adenovirus system can also be adapted to introduce genes other than Cre recombinase into host cells. Two principal advantages of using this delivery vector are its high transduction and gene delivery efficiency, and lack of integration with host DNA. However, the generation of novel recombinant adenoviruses can be labour intensive. The protocol described here therefore harnesses the power of the adenoviral system by exploiting the previously developed adeno-Cre virus, and coupling that with our floxed allele of interest, Rac1. Through this conditional knock out experiment, we have confirmed that transduction using the adeno-Cre virus of MEFs carrying a floxed Rac1 allele does indeed cause excision of Rac1 leading to the changes in cellular morphology characteristic of Rac1-deficient cells2,5.
The authors have nothing to disclose.
The authors would like to thank Dr. Rizaldy Scott at Mount Sinai Hospital in Toronto, Ontario for his gift of the primary Rac1flox/flox mouse embryonic fibroblasts. This work was supported by operating grants to NJ from the Canadian Institutes of Health Research (CIHR, MOP 2009-93526 ) and the Natural Science and Engineering Research Council of Canada (NSERC, RG 327372-06). SH and MW are supported by CGSMA and CGS-M awards from CIHR and NSERC, respectively.
Steve Hawley and Melanie Wills contributed equally to this paper.
Material Name | Type | Company | Catalogue Number | Comment |
---|---|---|---|---|
Ad-CMV-Cre virus | Vector Biolabs | 1045 | ||
DME High glucose media 500mL | Fisher | SH3002201 | ||
FBS Canadian origin 500mL | VWR | CAA15-701 | ||
PEN-STREP 1X solution 100mL | Fisher | SV30010 | ||
Texas Red-X phalloidin | Invitrogen | T7471 | ||
Trypsin | Sigma | T4549 |