Summary

如何建立一个激光散斑对比度成像(LSCI)系统,以监测血流

Published: November 11, 2010
doi:

Summary

本视频演示了如何构建一个激光散斑对比度成像(LSCI)系统,可以很容易地被用来监测血液流量。

Abstract

激光散斑对比度成像(LSCI)是一个简单而强大的技术,是满场血流显像。技术分析在动态散斑检测如何激光多普勒频移进行分析来确定粒子的速度运动的粒子的波动。因为它可以用来监测的红血细胞的运动,LSCI已成为一个流行的工具测量组织如视网膜,皮肤和大脑的血流量。在神经科学,其中可量化的生理活动过程中,如功能激活,中风和蔓延的去极化的血流量的变化,它已成为特别有用。 LSCI也有吸引力,因为它提供了良好的空间和时间分辨率,而使用廉价的仪器,可以很容易地与其他成像方式相结合。在这里,我们展示如何构建一个LSCI设置和证明其有能力,监测在动物实验中大脑中的血液流量的变化。

Protocol

1。影像设定宏变焦镜头的摄像机应安装在一个垂直的阶段或手术显微镜(取而代之的是宏观变焦镜头,在显微镜客观和镜头或一个简单的双镜头系统,根据所需的放大倍率,可以用来)。 从我们的网站下载相应的软件来控制摄像头( http://bach.bme.utexas.edu/mediawiki/index.php/Software )。 相机软件应该被用来确认一个对象的重点?…

Discussion

在这段视频中,我们已经证明建立和使用激光散斑对比成像(LSCI)系统血流量的变化看,它是多么容易。 LSCI在20世纪80年代开发的一种方式产生1视网膜中的血液流动的地图。虽然仍用于图像的视网膜和皮肤灌注,它已成为极受欢迎,作为一个图像在大脑 2血流技术。这主要是由于出色的空间和时间分辨率和简单的仪器。 LSCI已被用来调查血流量的变化由于3,4功能激活?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者承认由美国心脏协会(0735136N),达纳基金会,美国国家科学基金会(CBET/0737731),库尔特基金会的支持。

Materials

Material Name Type Company Catalogue Number Comment
Firewire camera   Basler scA640-74f  
Macro zoom lens   Edmund Optics NT58-240  
Laser diode   Thorlabs HL6501MG  
Laser diode controller   Thorlabs LDC201CU  

The technique is versatile enough to be used with a wide range of equipment. The only things necessary to perform the experiment are a compatible camera with a lens, a laser diode of any type with a controller, and the provided software. A table of the specific equipment used in the video is included above.

A complete list of additional parts that can be used in this experiment is found on our website, http://bach.bme.utexas.edu/mediawiki/index.php/Hardware

References

  1. Briers, J. D., Fercher, A. F. Retinal blood-flow visualization by means of laser speckle photography. Invest. Ophthalmol. Vis. Sci. 22, 255-259 (1982).
  2. Boas, D. A., Dunn, A. K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 15, 011109-011109 (2010).
  3. Dunn, A. K. Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation. Opt Lett. 28, 28-30 (2003).
  4. Devor, A. Coupling of the cortical hemodynamic response to cortical and thalamic neuronal activity. Proc Natl Acad Sci U S A. 102, 3822-3827 (2005).
  5. Ayata, C. Pronounced hypoperfusion during spreading depression in mouse cortex. J Cereb Blood Flow Metab. 24, 1172-1182 (2004).
  6. Jones, P. Simultaneous multispectral reflectance imaging and laser speckle flowmetry of cerebral blood flow and oxygen metabolism in focal cerebral ischemia. J. Biomed. Opt. 13, (2008).
  7. Dunn, A. K., Bolay, H., Moskowitz, M. A., Boas, D. A. Dynamic imaging of cerebral blood flow using laser speckle. J Cereb Blood Flow Metab. 21, 195-201 (2001).
  8. Dunn, A. K., Devor, A., Dale, A. M., Boas, D. A. Spatial extent of oxygen metabolism and hemodynamic changes during functional activation of the rat somatosensory cortex. Neuroimage. 27, 279-290 (2005).
  9. Farkas, E., Bari, F., Obrenovitch, T. P. Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex. Neuroimage. 51, 734-742 (2010).
  10. Sakadzic, S. Simultaneous imaging of cerebral partial pressure of oxygen and blood flow during functional activation and cortical spreading depression. Appl. Opt. 48, (2009).
  11. Ponticorvo, A., Dunn, A. K. Simultaneous imaging of oxygen tension and blood flow in animals using a digital micromirror device. Opt Express. 18, 8160-8170 (2010).

Play Video

Cite This Article
Ponticorvo, A., Dunn, A. K. How to Build a Laser Speckle Contrast Imaging (LSCI) System to Monitor Blood Flow. J. Vis. Exp. (45), e2004, doi:10.3791/2004 (2010).

View Video