19.5:

Inverse z-Transform by Partial Fraction Expansion

JoVE 핵심
Electrical Engineering
JoVE 비디오를 활용하시려면 도서관을 통한 기관 구독이 필요합니다.  전체 비디오를 보시려면 로그인하거나 무료 트라이얼을 시작하세요.
JoVE 핵심 Electrical Engineering
Inverse z-Transform by Partial Fraction Expansion

47 Views

01:20 min

September 26, 2024

The inverse z-transform is a crucial technique for converting a function from its z-domain representation back to the time domain. One effective method for finding the inverse z-transform is the Partial Fraction Method, which involves decomposing a function into simpler fractions with distinct coefficients. These fractions correspond to known z-transform pairs, facilitating the inverse transformation process.

To begin the process, the poles of the function are identified and the function is expressed in terms of these poles. Each pole contributes a term to the partial fraction decomposition. The coefficients for each term in the decomposition are determined by evaluating the residues at each pole.

Once the coefficients are determined, the function is reassembled in its decomposed form, making it simpler to work with. The inverse z-transform is then applied to each fractional term separately. The result combines delta functions, exponential sequences, and step functions representing the original time-domain sequence.

Using the Partial Fraction Method, the inverse z-transform of complex functions becomes more manageable, allowing for accurate conversion back to the time domain. This method ensures that each component of the decomposed function is correctly transformed, resulting in a precise reconstruction of the original sequence.