The purpose of this paper is to illustrate how to organize a reproducible laboratory for laryngeal surgery on affordable and closely similar animal laryngeal models in order to improve anatomical and surgical knowledge and skills.
Surgery for laryngeal malignancies requires millimetric accuracy from the different endoscopic and open techniques available. Practice of this surgery is almost completely reserved to a few referral centers that deal with a large proportion of this pathology. Practice on human specimens is not always possible for ethical, economic, or availability reasons. The aim of this study is to provide a reproducible method for the organization of a laryngeal laboratory on ex vivo animal models where it is possible to approach, learn, and refine laryngeal techniques. Porcine and ovine larynges are ideal, affordable, models to simulate laryngeal surgery given their similarity to the human larynx in their anatomical layout and tissue composition. Herein, the surgical steps of transoral laser surgery, open partial horizontal laryngectomy, and total laryngectomy are reported. The merging of endoscopic and exoscopic views guarantees an inside-out perspective, which is vital for the comprehension of the complex laryngeal anatomy. The method was successfully adopted during three sessions of a dissection course "Lary-Gym". Further perspectives on robotic surgical training are described.
In recent years, the field of laryngeal oncology has seen the introduction and spread of organ sparing protocols such as chemoradiotherapy (CRT), function sparing procedures like transoral laser microsurgery (TLM) and partial laryngectomies, and mainly open partial horizontal laryngectomies (OPHLs). Due to the current general propensity to give greater priority to a patient's quality of life after treatment, this strategy change was necessary in order to avoid, when possible, the burdensome consequences of the total laryngectomy (TL) procedure, which still remains the standard treatment for locally advanced laryngeal cancer. However, despite surgical and technical innovations, TL remains the ideal treatment for advanced stage laryngeal cancer (LC) and for patients who cannot tolerate a conservative protocol because of age or important comorbidities. Therefore, TL has to be properly included in the armamentarium of a complete laryngeal surgeon.
A relevant problem in learning about LC treatment is the relatively rare incidence of the pathology (~13,000 new diagnoses per year in the USA), against the wide spectrum of possible alternatives1,2. Moreover, as clearly stressed by Olsen in one of his editorials, the misinterpretation of studies that satisfy the standard of care leads to several unintended consequences3. One such consequence was the abandonment of TLM and OPHLs, because they were not included in those studies and in the cost-benefit evaluation, and therefore are no longer taught to residents and young surgeons3. As a result, there is a significant paucity of centers in which it is possible to actively learn a surgical technique demanding a high level of accuracy, where the difference between a conservative and an extirpative procedure is quantifiable in the order of millimeters.
In response to this background and to meet the need for dissemination of these surgical procedures, the European Laryngological Society has worked to standardize and classify both TLM and OPHL techniques4,5,6. The tremendous result of these classifications was to introduce the possibility of a modular treatment for LC, customized by the real tumor extent and always remaining inside the field of 'partial' surgery and function sparing treatment.
As emphasized in recent work, surgical ability (as a matter of fact, the success of a procedure requires millimetric accuracy) and strict patient selection are mandatory for good results7,8,9. In good hands, and if applied to the proper patients and diseases, TLM and OPHL exhibit solid surgical and survival outcomes.
The practice and evolution of these surgical procedures took place almost exclusively in referral centers for pathology, due to the relatively high number of patients, which allowed the surgeons to develop the essential expertise to successfully treat even locally advanced LCs. Trying to summarize the current scenario, laryngeal surgery can be applied to a relatively small number of patients and consists of different procedures that are not available and viable in every center. To preserve laryngeal function and equally reach the oncological radicality, perfect comprehension of the geometrical anatomy, technical accuracy, and concern for the tissues, are mandatory. For all these reasons, simulations on models are nowadays necessary to successfully approach this type of surgery. Faithful, detailed simulations are required to consolidate the comprehension of the laryngeal framework, manage tissue manipulation with different techniques, and to learn the exact and precise sequence of movements required by a single procedure. Therefore, to learn TLM and OPHL techniques, it is appropriate to be able to practice in a dedicated laboratory. Where there is no possibility to train on human specimens, for ethical, economic, or availability reasons, it is necessary to find an alternative and affordable ex vivo model. Porcine and ovine larynges, waste animal products in the meat supply chain, are ideal and affordable models to simulate laryngeal surgery given their similarity to the human larynx in anatomical layout and tissue composition10,11.
Several groups have reported their experiences with porcine larynx used as a model for TLM11,12,13,14. Despite the different dimensions of the cartilaginous skeleton with larger arytenoids and the inability to distinguish between arytenoid, corniculate, and cuneiform cartilage, the glottic plane is very similar to its human counterpart: the arytenoid cartilage has an analogous articulation with the cricoid and similar geometric proportions15. When compared to other animal species, the porcine larynx has a defined laryngeal ventricle with well represented false vocal cords, while the glottic plane is characterized by short arytenoid vocal processes, long vocal folds, and the absence of a proper vocal ligament14. Furthermore, from the histologic point of view, Hahn and colleagues have reported a comparable elastin distribution within the lamina propria between porcine and human glottic planes16,17,18.
On the other hand, other studies have described the utilization of lamb larynx for both TLM and open surgeries10,19,20. In detail, Nisa et al. confirmed the strong similarity between ovine and human larynges, with the exception of a differently shaped hyoid bone and arytenoid cartilage, a lower position of the anterior commissure (placed at the inferior border of the thyroid cartilage), and near-complete tracheal rings21. Despite these small differences, those authors outlined the great utility of this model for training and practice of laryngotracheal surgical procedures21. Moreover, the same model was also used to simulate the percutaneous tracheostomy procedure22.
The aim of the present study is to illustrate how to prepare and organize a reproducible laboratory for laryngeal surgery on affordable and closely similar ex vivo animal laryngeal models. The authors' experience in setting up such a laboratory was acquired during years of training on surgical simulation in a laboratory of experimental laryngeal surgery called "Lary-Gym" – at the FPO-IRCCS Cancer Institute of Candiolo, Turin, Italy.
1. Collection of the Specimens
2. Preparation of the Laboratory
3. Preparation of the Endoscopic Station
4. Preparation of the Open Surgery Station
5. (Optional) Broadcast the Dissection
6. Endoscopic Dissection
7. Open Dissection I (OPHL)
8. Open Dissection II (Total Laryngectomy)
This protocol proved to be useful for setting up a surgical training laboratory focused on laryngeal surgery using basic instruments and animal waste innards from the meat supply chain. The goal is mostly instructive, but it could be used by less experienced surgeons to improve their anatomical knowledge and surgical skills.
The protocol was adopted in three sessions of the authors' dissection course organized in the 'Lary-Gym' and in the second session of the Head and Neck Surgery Course named "Better than live", where the laboratory dissections were accompanied by teaching sessions by skilled surgeons in this field, and it was greeted enthusiastically by the participants. Overall, 228 colleagues took part in both courses. Twenty-eight attended the Lary-Gym course, and 200 attended the 'Better than live' course. In the Lary-Gym course's last two sessions, the satisfaction of 14 participants was determined through a dedicated questionnaire where participants responded to questions about their experience in the course. The questionnaire and the results are reported in Table 1. The animal models chosen proved to be very similar to the human counterpart, with a comparable tissue composition. The possibility to use both the endoscopic and open procedures guaranteed comprehensive understanding of the anatomical layout and surgical techniques. In fact, this inside-out vision could clarify the complex laryngeal anatomy and the implications of the surgical maneuvers in terms of extirpative and reconstructive procedures (e.g., the anastomosis technique in OPHL). In the last session of the course, human specimens and a surgical robot were successfully used to show various transoral robotic surgery (TORS) procedures. The setting of the room was similar to that described, showing that this protocol has good flexibility and can be adapted to equipment and space available in a particular institution.
Figure 1: Endoscopic dissection. A young surgeon working in our endoscopic station on an animal specimen. Please click here to view a larger version of this figure.
Question | 1 | 2 | 3 | 4 | 5 | |
How do you value the relevance of the treated topic in respect of your need to update your surgical skills? | 0 | 0 | 0 | 1 (7%) | 13 (93%) | |
How do you value the educational quality of this course? | 0 | 0 | 0 | 1 (7%) | 13 (93%) | |
How do you value the utility of this course? | 0 | 0 | 0 | 1 (7%) | 13 (93%) | |
Absence of conflict of interest. | 0 | 0 | 0 | 0 | 14 (100%) |
Table 1: The Lary-Gym course: satisfaction questionnaire and responses. The score ranges from 1 (very dissatisfied) to 5 (very satisfied). Percentages are reported in brackets.
This paper aims to describe the organization of a laboratory dedicated to laryngeal surgery and the choice of equivalent ex vivo animal models that can be used to simulate several surgical procedures in an economical but faithful manner. When human specimens are not available, it is necessary to find an accurate animal model to be used as a substitute. If there is no anatomy department that can provide specimens from body donations, the average price for a human model is about $1,300–1,500. On the other hand, for an animal slaughtered for meat products, the equivalent ex vivo animal models are about $8 or less. Here, the experiences of setting up the dedicated space, individual training sessions, and the organization of surgical dissection courses are reported. Based on the literature, it was decided to use porcine and ovine laryngeal models, mainly for laser and open surgery, respectively10,14,15,19,20,21. Both the animal models described are easily available and affordable since they are animal waste products in the meat supply chain. Moreover, these ex vivo models are easily managed and stored, with no risk for the operators. Even if slightly different from the human larynx and removed from the normal context of the neck, the anatomical proportions and tissue composition of the animal substitutes are very similar, allowing a step-by-step reproduction of TLM, OPHL, and TL techniques. The large number of specimens available for a very reasonable price guarantees the possibility to repeat the procedure many times. In this way, surgeons can not only improve their precision and accuracy in surgical procedures, but they can also increase their speed of execution, principally during the less important surgical steps of the procedures.
The contemporary use of microscopes/endoscopes for the endolaryngeal view, together with the external view, enhanced in this case by the 3D exoscope, allows an inside-out perspective to be gained, which can help surgeons to fully understand the complex laryngeal anatomy and the importance of each surgical step. Moreover, the use of a camera and screen to share the dissection allows the tutor and the other surgeons to monitor the same field of view as the first operator, increasing the training potential of the system. In this way the tutor can guide the procedure, correct mistakes, and answer any questions or comments.
This type of set-up can be easily replicated, as it is modular and flexible based on the instruments and devices available. Naturally, possible limitations of the animal models can be found in the intrinsic differences between the model and the human larynx and in working on a single prepared organ in the absence of the normal relationships with the surrounding anatomical structures. In detail, the porcine larynx has different arytenoids conformation, which requires a good glottic exposure. Moreover, the absence of the vocal ligament in the porcine specimen prevents a completely realistic type II cordectomy. On the other hand, these differences are somewhat overshadowed by the availability and cost of the animal models, which are very similar substitutes in tissue consistency and structure. Once the surgeon has acquired sufficient ability, the natural step forward is to switch to simulation to the more expensive human specimens.
A laryngeal training center with the features described is an ideal set-up for training in this precision surgery, for technical refinement, and for teaching purposes. Moreover, the same laboratory can be used to test novel head and neck surgical techniques. For example, the growing diffusion of transoral robotic surgery for oropharyngeal and supraglottic tumors requires time for individual training on the robotic console and to experience tissue manipulation and movements. All of these exercises can be easily simulated and repeated inexpensively in a training laboratory organized as described, without moving surgical facilities and instruments.
The authors have nothing to disclose.
The authors would like to acknowledge the Administration of the FPO-IRCCS of Candiolo (Turin) for the contribution and the constant support to our work.
3D camera | STORZ | VITOM 3D TH200 | |
4k camera | STORZ | TH120 | |
4K/3D 32" monitor | STORZ | TM350 | |
Autostatic arm for VITOM 3D | STORZ | 28272 HSP | |
Bone Rongeur, Luer | MEDICON | 30.30.35 | |
CO2 fiber laser | LUMENIS | Ultrapulse/Surgitouch | |
CO2 laser | LUMENIS | AcuPulse 40WG | |
Dedo operating larygoscope | STORZ | 8890 A | |
Delicate tissue forceps, Adson | MEDICON | 06.21.12 | |
Hemostatic forceps curved | MEDICON | 15.45.12 | |
Hemostatic forceps straight | MEDICON | 15.44.12 | |
Hook | MEDICON | 20.48.05 | |
Hopkins II forward-oblique telescope 30° | STORZ | 8712 BA | |
Hopkins II forward-oblique telescope 70° | STORZ | 8712 CA | |
Hopkins II straight forward telescope 0° | STORZ | 8712 AA | |
Image 1 pilot | STORZ | TC014 | |
Kleinsasser handle | STORZ | 8597 | |
Kleinsasser hook 90° | STORZ | 8596 C | |
Kleinsasser injection needle straight | STORZ | 8598 B | |
Kleinsasser scissors curved to left | STORZ | 8594 D | |
Kleinsasser scissors curved to right | STORZ | 8594 C | |
Kleinsasser scissors straight | STORZ | 8594 A | |
Light source | STORZ | TL300 | |
Lindholm distending forceps | STORZ | 8654 B | |
Lindholm operating laryngoscope | STORZ | 8587 A | |
Mayo standard scissors | MEDICON | 03.50.14 | |
Microscope | LEICA | F40 | |
Module for 3D image | STORZ | Image 1 D3-link TC302 | |
Module for 4K image | STORZ | Image 1 s 4U-Link TC304 | |
Needle Holder | MEDICON | 10.18.65 | |
Operating scissors standard curved | MEDICON | 03.03.13 | |
Raspatory, Freer | MEDICON | 26.35.02 | |
Retractor, double-ended, Roux | MEDICON | 22.16.13 | |
Retractor, Volkmann | MEDICON | 22.34.03 | |
Retractory, double-ended, langenbeck | MEDICON | 22.18.21 | |
Scalpel #11 | |||
Scalpel #15 | |||
Steiner Coagulation suction tube | STORZ | 8606 D | |
Steiner Grasping forceps curved to left | STORZ | 8663 CH | |
Steiner Grasping forceps curved to right | STORZ | 8663 BH | |
Steiner Laryngoforce II grasping forceps | STORZ | 8662 E | |
Steiner operating laryngoscope | STORZ | 8661 CN | |
Suction tube to remove vapor | STORZ | 8574 LN | |
Tissue grasping forceps | MEDICON | 07.01.10 | |
Tissue Grasping forceps, Allis | MEDICON | 50.02.15 | |
Towel clamp | MEDICON | 17.55.13 | |
Vascular forceps, DeBakey | MEDICON | 06.50.15 | |
Video processor | STORZ | Image 1S connect II TC201 | |
Yankauer suction tube |