Here we describe a method to assess lung expression of miRNAs that are predicted to regulate inflammatory genes using mice exposed to ozone or filtered air at different stages of the estrous cycle.
MicroRNA (miRNA) profiling has become of interest to researchers working in various research areas of biology and medicine. Current studies show a promising future of using miRNAs in the diagnosis and care of lung diseases. Here, we define a protocol for miRNA profiling to measure the relative abundance of a group of miRNAs predicted to regulate inflammatory genes in the lung tissue from of an ozone-induced airway inflammation mouse model. Because it has been shown that circulating sex hormone levels can affect the regulation of lung innate immunity in females, the purpose of this method is to describe an inflammatory miRNA profiling protocol in female mice, taking into consideration the estrous cycle stage of each animal at the time of ozone exposure. We also address applicable bioinformatics approaches to miRNA discovery and target identification methods using limma, an R/Bioconductor software, and functional analysis software to understand the biological context and pathways associated with differential miRNA expression.
microRNAs (miRNAs) are short (19 to 25 nucleotides), naturally occurring, non-coding RNA molecules.Sequences of miRNAs are evolutionary conserved across species, suggesting the importance of miRNAs in regulating physiological functions1. microRNA expression profiling has been proven to be helpful for identifying miRNAs that are important in the regulation of a variety of processes, including the immune response, cell differentiation, developmental processes, and apoptosis2. More recently, miRNAs have been recognized for their potential use in disease diagnostics and therapeutics. For researchers studying mechanisms of gene regulation, measuring miRNA expression can enlighten systems-level models of regulatory processes, especially when miRNA information is merged with mRNA profiling and other genome-scale data3. On the other hand, miRNAs have also been shown to be more stable than mRNAs in a range of specimen types and are also measurable with greater sensitivity than proteins4. This has led to considerable interest in the development of miRNAs as biomarkers for diverse molecular diagnostic applications, including lung diseases.
In the lung, miRNAs play important roles in developmental processes and the maintenance of homeostasis. Moreover, their abnormal expression has been associated with the development and progression of various pulmonary diseases5. Inflammatory lung disease induced by air pollution has demonstrated greater severity and poorer prognosis in females, indicating that hormones and the estrous cycle can regulate lung innate immunity and miRNA expression in response to environmental challenges6. In this protocol, we use ozone exposure, which is a major component of air pollution, to induce a form of lung inflammation in female mice that occurs in the absence of adaptive immunity. By using ozone, we are inducing the development of airway hyperresponsiveness that is associated with airway epithelial cell damage and an increase in neutrophils and inflammatory mediators in proximal airways7. Currently, there are not well-described protocols to characterize and analyze miRNAs across the estrous cycle in ozone-exposed mice.
Below, we describe a simple method to identify estrous cycle stages and miRNA expression in lung tissue of female mice exposed to ozone. We also address effective bioinformatics approaches to miRNA discovery and target identification, with an emphasis on computational biology. We analyze the microarray data using limma, an R/Bioconductor software that provides an integrated solution for analyzing data from gene expression experiments8. Analysis of PCR array data from limma has an advantage in terms of power over t-test based procedures when using small number of arrays/samples to compare expression. To comprehend the biological context of miRNA expression results, we then used the functional analysis software. In order to understand the mechanisms regulating transcriptional changes and to predict likely outcomes, the software combines miRNA-expression datasets and knowledge from the literature9. This is an advantage when compared with software that just look for statistical enrichment in overlapping to sets of miRNAs.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Penn State University.
1. Assessment of the Estrous Cycle Stage
2. Exposure to Ozone
3. Lung Collection
4. RNA Preparation
5. miRNA Profiling
6. Data Analysis
7. Data Analysis: Functional Analysis Software
The different cell types observed in smears are used to identify the mouse estrous cycle stage (Figure 1). These are identified by cell morphology. During proestrus, cells are almost exclusively clusters of round-shaped, well-formed nucleated epithelial cells (Figure 1A). When the mouse is in the estrus stage, cells are cornified squamous epithelial cells, present in densely packed clusters (Figure 1B). During metestrus, cornified epithelial cells and polymorphonuclear leukocytes are seen (Figure 1C). In diestrus, leukocytes (small cells) are generally more prevalent (Figure 1D).
We extracted RNA from four mouse lungs following the protocol previously described. The nucleic acid concentrations (ng/ µL) ranged between 1197.9 and 2178.1 with an average of 1583.1 ± 215 (Table 1). The average A260/A280 ratio fluctuated from 2.010 to 2.020 with an average of 2.016 ± 0.002. On the other hand, the observed A260/A230 ratios oscillated between 2.139 and 2.223 with an average of 2.179 ± 0.018.
Table 2 shows differential expression results obtained with limma on R. We calculated top differentially expressed miRNAs between mice exposed to ozone or filtered air in proestrus (using the command toptable)14. The first column gives the value of the log2-fold fold change in miRNA expression between ozone and filtered air exposed animals. The column t represents the moderate t-statistic calculated for each miRNA in the comparison. The columns p.value and adj.p.value represent associated p-values for each comparison before and after multiple testing adjustment, respectively. Adjustment for multiple comparisons was done with the Benjamini and Hochberg's method to control the false discovery rate15. Column B represents the log-odds that the miRNA is differentially expressed8.
We performed the miRNA target filter and core analysis that includes the enrichment pathway analysis. After uploading a list of 14 miRNAswith the significant expression log ratio and p-value, all of them were mapped by the miRNA target filter (Table 3). The results were filtered and sorted to get to certain pathways, in this case the "Cellular Immune Response". The core analysis provided information about canonical pathways, diseases and function, regulators, and networks (Table 4). The functional analysis software produced a network analysis that shows the relationship between the miRNAs of interest and other molecules (Figure 3).
Figure 1: Identification of estrous cycle stages. (A) Proestrus (predominantly nucleated epithelial cells); (B) estrus (predominantly anucleated cornified cells); (C) metestrus (all three types of cells); and (D) diestrus 2 (majority of leukocytes). Scale bar = 100 µm. Magnification = 20x. Please click here to view a larger version of this figure.
Figure 2: Functional analysis software representative results: miRNA target filter. Comprehensive profile of miRNAs at different stages of the estrous cycle. After performing miRNA filter, the software delivers detailed listings of genes and compounds implicated in diseases and other phenotypes, which can be filter and sort to get to certain pathways, in this case "Cellular Immune Response". Please click here to view a larger version of this figure.
Figure 3: Functional analysis software representative results: networks. Comparison of networks affected by filtered air or ozone exposure in females at different stages of the estrous cycle. Diagram of biological networks associated with miRNAs in the lungs of female mice exposed to filtered air vs. ozone in proestrus (A) or non-proestrus stages (B). This figure has been modified from Fuentes et al.6. Please click here to view a larger version of this figure.
ID | Nucleic Acid (ng/µL) | A260/A280 | A260/A230 |
Sample 1 | 1197.930 | 2.015 | 2.192 |
Sample 2 | 1355.703 | 2.018 | 2.223 |
Sample 3 | 2178.104 | 2.020 | 2.163 |
Sample 4 | 1600.837 | 2.010 | 2.139 |
Average | 1583.144 ± 215 | 2.016 ± 0.002 | 2.179 ± 0.018 |
Table 1: Example of RNA concentrations and absorbance ratios at 260, 230, and 280 nm from purified lung tissue samples from four mice. Concentrations were measured with a spectrophotometer.
logFC | t | P.Value | adj.P.Val | B | |
mmu-miR-694 | 1.492 | 4.071 | 0.000153 | 0.009514 | 0.759 |
mmu-miR-9-5p | 0.836 | 3.916 | 0.000254 | 0.009514 | 0.289 |
mmu-miR-221-3p | 0.385 | 3.106 | 0.003014 | 0.075361 | -1.982 |
mmu-miR-181d-5p | 0.597 | 2.891 | 0.005516 | 0.103424 | -2.526 |
mmu-miR-98-5p | 0.558 | 2.699 | 0.009243 | 0.138649 | -2.987 |
mmu-miR-712-5p | 0.667 | 2.563 | 0.013169 | 0.164609 | -3.299 |
mmu-miR-106a-5p | -0.528 | -2.412 | 0.019278 | 0.206547 | -3.632 |
Table 2: Limma analysis results for differentially expressed miRNAs in females exposed to ozone vs. filtered air in the proestrus stage.
miRNAs ID | Observation 1 | Observation 1 | Observation 2 | Observation 2 |
Expr Log Ratio | P Value | Expr Log Ratio | P Value | |
mmu-miR-694 | 1.492 | 0.000153 | 0.543319208 | 0.0021385 |
mmu-miR-9-5p | 0.836 | 0.000254 | 0.677595421 | 0.004997439 |
mmu-miR-221-3p | 0.385 | 0.003014 | ||
mmu-miR-181d-5p | 0.597 | 0.005516 | 0.342276659 | 0.106467657 |
mmu-miR-98-5p | 0.558 | 0.009243 | 0.455392799 | 0.034724699 |
mmu-miR-712-5p | 0.667 | 0.013169 | ||
mmu-miR-106a-5p | -0.528 | 0.019278 |
Table 3: Example format for multi-observation upload of datasets to functional analysis software. Multiple experimental differential expressions can be grouped into a single spreadsheet and uploaded, and as many observations as needed can be added. Columns: 1) miRNAs ID; 2) Observation 1: Expr Log Ratio; 3) Observation 1: P Value; 4) Observation 2: Expr Log Ratio; 5) Observation 2: P Value.
Non-proestrus | Proestrus | ||||
A. Genes targeted by differentially expressed miRNAs | |||||
CAMK2N1 | PAFAH1B2 | SEC23A | ABCB9 | FGD4 | SLC25A27 |
CARS | PDE4B | SNX5 | APOO | FRMD4B | SLC38A1 |
CYP24A1 | PDE7A | SYT4 | ARHGEF38 | GPR137B | TMCC1 |
DBF4 | PGM3 | THAP12 | AVEN | HMBS | TRIM71 |
HMGN2 | PNP | TMED7 | CASP3 | METAP1 | XKR8 |
KMT5A | REV1 | TNFAIP2 | CCNJ | MITF | ZCCHC11 |
LRRC17 | RPS19BP1 | TNFRSF10C | CMTR2 | MYC | ZIM3 |
MDH2 | RRAD | TP53 | CNMD | RGMB | ZNF181 |
MIS18A | SEC62 | UBE2V2 | DSCR8 | SLC14A1 | |
ZNF420 | |||||
B. Differences in top diseases and biofunctions | |||||
Diseases and Disorders | P Value | Diseases and Disorders | P Value | ||
Inflammatory disease | 3.84E-02 – 3.84E-05 | Organismal injury and abnormalities | 4.96E-02 – 2.77E-14 | ||
Inflammatory response | 3.84E-02 – 3.84E-05 | Reproductive system disease | 2.15E-02 – 2.77E-14 | ||
Organismal injury and abnormalities | 4.17E-02 – 4.17E-05 | Cancer | 4.96E-02 – 1.27E-10 | ||
C. Top molecular and cellular functions | |||||
Molecular and Cellular Functions | P Value | Molecular and Cellular Functions | P Value | ||
Cellular development | 2.05E-02 – 5.26E-07 | Cellular movement | 3.77E-02 – 4.47E-07 | ||
Cellular compromise | 3.75E-04 – 3.75E-04 | Cellular death and survival | 4.91E-02 – 5.61E-06 | ||
Cell cycle | 2.62E-03 – 2.62E-03 | Cellular development | 4.97E-02 – 1.38E-06 | ||
D. Top physiological system development and function | |||||
Development and Function | P Value | Development and Function | P Value | ||
Organismal development | 4.17E-02 – 1.31E-03 | Embryonic development | 3.30E-02 – 2.12E-05 | ||
Embryonic development | 1.29E-02 – 1.29E-02 | Connective tissue development and function | 1.79E-02 – 6.10E-05 | ||
Connective tissue development and function | 1.93E-02 – 1.93E-02 | Tissue morphology | 7.88E-05 – 7.88E-05 | ||
E. Top associated network functions | |||||
Associated Network Functions | Score | Associated Network Functions | Score | ||
Cellular development, inflammatory disease, inflammatory response | Organismal injury and abnormalities, reproductive system disease, cancer | ||||
6 | 19 |
Table 4: Functional analysis software summary of females exposed to ozone in the non-proestrus vs. proestrus stages. The functional analysis software allows the analysis of top canonical pathways, upstream regulators, diseases & functions, top functions, regulator effect networks and more. This table has been modified from Fuentes et al.6.
MicroRNA profiling is an advantageous technique for both disease diagnosis and mechanistic research. In this manuscript, we defined a protocol to evaluate the expression of miRNAs that are predicted to regulate inflammatory genes in the lungs of female mice exposed to ozone in different estrous cycle stages. Methods for the determination of the estrous cycle, such as the visual detection method, have been described16. However, these rely on one-time measurements, and therefore are unreliable. To accurately identify all estrous cycle stages in females that cycle regularly, the method described here is recommended. In addition, this simple protocol can also be used to indirectly estimate daily hormonal fluctuations in mice. To avoid activation of unwanted inflammatory responses due to vaginal irritation, sampling needs to be performed just once daily. Because of variability in the cycle length and housing influences, it is important to perform the protocol for two to three complete cycles before using animals in an experiment considering the cycle stage.
For the successful extraction of RNA from lung tissue, an accurate procedure is critical. This protocol describes a one-day method to isolate RNA from lung tissue that yields high-quality RNA. Modifications to the manufacturer's protocol were required to efficiently extract RNA from lungs. We added an additional centrifugation step after addition of the wash buffer to remove as much buffer as possible. We also eluted RNA with 35 µL of DNase/RNase-free water, centrifuging the column for 1.5 min to ensure high concentration levels. Spectrofluorometer results confirmed the effectiveness of our RNA extraction protocol. The ratio of absorbance at 260 and 280 nm (A260/280 ratio) is frequently used to assess the purity of RNA preparations. The maximum absorbance for nucleic acids is 260 and 280 nm, respectively. It is accepted as "pure" for RNA if the ratio is about 2.017. Likewise, for the A260/A230 contamination absorbance ratio, the values for purity are in the range of 2.0–2.218. In this study, the average A260/A280 and A260/A230 ratios observed were 2.016 ± 0.002 and 2.179 ± 0.018, respectively (Table 1). Therefore, our RNA extraction protocol was successful. Another advantage of the protocol used is the addition of the DNAse treatment. This is important to avoid genomic-DNA contamination19. A limitation of this RNA isolation protocol is the use of purification columns to discard waste through precipitation using alcohol because some lung debris may obstruct the membrane either partially or completely, resulting in low yields. Also, if the homogenization step is not carefully performed, large quantities of lung RNA can be easily lost or degraded. If low RNA yields are obtained, RNA can be re-purified and eluted in a smaller volume. Alternatively, RNA can be precipitated overnight following published protocols20.
Microarray technologies applied to miRNA profiling are promising tools in many research fields. In our study, we used PCR arrays, which provide the advantage of higher detection threshold, and normalization strategies for detection of differentially expressed miRNAs vs. other technologies such as probe-based miRNA arrays21. A limitation of this protocol is that it requires a minimum amount of starting RNA material, and availability of specific sets of primers for the miRNAs of interest, as opposed to other available techniques such as RNAseq. Another advantage of PCR-based arrays is the option of using non-miRNA reference genes for qPCR normalization (such as small nucleolar RNAs or SNORDs) to calculate differential expression of miRNAs. Finally, using PCR arrays provides several options for data analysis, ranging from online tools provided by the manufacturers, to conventional methods to detect differential expression though Real-Time PCR. Statistical analysis with limma is convenient for both microarrays and PCR-based arrays and uses the empirical Bayes moderated f-statisitcs22. Here, we show that both p-values and q-values (adjusted for multiple testing) can be obtained with the command toptable adjusting the false discovery rate threshold and identifying differentially expressed miRNAs.
Functional analysis software is a web-based application for data analysis in pathway context. The software gives researchers powerful search abilities that can help to frame data sets or specific targets in context, within a bigger picture of biological significance. Although the software environment is flexible to different types of analysis (i.e., metabolomics, SNPs, proteomics, microRNA, toxicology, etc.), our goal here is to highlight aspects of miRNA analysis. After uploading a list of 14 miRNAs with significant expression log-ratios and p-values, all were mapped by the software. We performed the miRNA target filter and core analysis, which includes the enrichment pathway analysis. However, such analyses consider genes for which the 14 miRNAs are predicted to target and not the miRNAs themselves. The results section lists outputs such as: canonical pathways, diseases and function, genes targeted by differentially expressed miRNAs, physiological system development, regulators, and networks (Table 4). The pathway visualization is shown under the network tab, where miRNAs and molecules are shown as clickable nodes that are linked with information associated to the gene of interest (Figure 3). An advantage of the functional analysis software is the high-quality miRNA-related findings, including both experimentally validated and predicted interactions. The functional analysis software databases include: experimentally validated microRNA-mRNA interactions databases23,24, predicted microRNA-mRNA interaction database with low-confidence interactions excluded (e.g., Target Scan)25, experimentally validated human, rat, and mouse microRNA-mRNA interactions databases (e.g., miRecords)26, and literature findings (e.g., microRNA-related findings manually curated from published literature by scientific experts). Other studies comparing the effectiveness and usability of bioinformatics tools to analyze pathways associated with miRNA expression confirm the effectiveness of this software27. Overall, computational methods are cost-effective, less time-consuming, and can be easily validated by molecular methods. With the constant growth and accumulation of biomedical data, bioinformatics methods will become increasingly powerful in the discovery of miRNA-mediated mechanisms of biological and disease processes.
The authors have nothing to disclose.
This research was supported by grants from NIH K01HL133520 (PS) and K12HD055882 (PS). The authors thank Dr. Joanna Floros for the assistance with ozone exposure experiments.
C57BL/6J mice | The Jackson Laboratory | 000664 | 8 weeks old |
UltraPure Water | Thermo Fisher Scientific | 10813012 | |
Sterile plastic pipette | Fisher Scientific | 13-711-25 | Capacity: 1.7mL |
Frosted Microscope Slides | Thermo Fisher Scientific | 2951TS | |
Light microscope | Microscope World | MW3-H5 | 10X and 20X objective |
Ketathesia- Ketamine HCl Injection USP | Henry Schein Animal Health | 55853 | 90 mg/kg. Controlled drug. |
Xylazine Sterile Solution | Lloyd Laboratories | 139-236 | 10mg/kg. Controlled Drug. |
Ethanol | Fisher Scientific | BP2818100 | Dilute to 70% ethanol with water. |
21G gauge needle | BD Biosciences | 305165 | |
Syringe | Fisher Scientific | 329654 | 1mL |
Operating Scissors | World Precision Instruments | 501221, 504613 | 14cm, Sharp/Blunt, Curved and 9 cm, Straight, Fine Sharp Tip |
Tweezer Kit | World Precision Instruments | 504616 | |
-80 ˚C freezer | Forma | 7240 | |
Spectrum Bessman Tissue Pulverizers | Fisher Scientific | 08-418-1 | Capacity: 10 to 50mg |
RNase-free Microfuge Tubes | Thermo Fisher Scientific | AM12400 | 1.5 mL |
TRIzol Reagent | Thermo Fisher Scientific | 15596026 | |
Direct-zol RNA MiniPrep Plus | Zymo Research | R2071 | |
NanoDrop | Thermo Fisher Scientific | ND-ONE-W | |
miScript II RT kit | Qiagen | 218161 | |
Mouse Inflammatory Response & Autoimmunity miRNA PCR Array | Qiagen | MIMM-105Z | |
Thin-walled, DNase-free, RNase-free PCR tubes | Thermo Fisher Scientific | AM12225 | for 20 μl reactions |
miRNeasy Serum/Plasma Spike-in Control | Qiagen | 219610 | |
Microsoft Excel | Microsoft Corporation | https://office.microsoft.com/excel/ | |
Ingenuity Pathway Analysis | Qiagen | https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/ | |
R Software | The R Foundation | https://www.r-project.org/ | |
Thermal cycler or chilling/heating block | General Lab Supplier | ||
Microcentrifuge | General Lab Supplier | ||
Real-time PCR cycler | General Lab Supplier | ||
Multichannel pipettor | General Lab Supplier | ||
RNA wash buffer | Zymo Research | R1003-3-48 | 48 mL |
DNA digestion buffer | Zymo Research | E1010-1-4 | 4 mL |
RNA pre-wash buffer | Zymo Research | R1020-2-25 | 25 mL |
Ultraviolet ozone analyzer | Teledyne API | Model T400 | http://www.teledyne-api.com/products/oxygen-compound-instruments/t400 |
Mass flow controllers | Sierra Instruments Inc | Flobox 951/954 | http://www.sierrainstruments.com/products/954p.html |