A protocol for measuring electrical conductivity of living microbial biofilms under physiologically relevant conditions is presented.
Here we demonstrate the method of electrochemical gating used to characterize electrical conductivity of electrode-grown microbial biofilms under physiologically relevant conditions.1 These measurements are performed on living biofilms in aqueous medium using source and drain electrodes patterned on a glass surface in a specialized configuration referred to as an interdigitated electrode (IDA) array. A biofilm is grown that extends across the gap connecting the source and drain. Potentials are applied to the electrodes (ES and ED) generating a source-drain current (ISD) through the biofilm between the electrodes. The dependency of electrical conductivity on gate potential (the average of the source and drain potentials, EG = [ED + ES]/2) is determined by systematically changing the gate potential and measuring the resulting source-drain current. The dependency of conductivity on gate potential provides mechanistic information about the extracellular electron transport process underlying the electrical conductivity of the specific biofilm under investigation. The electrochemical gating measurement method described here is based directly on that used by M. S. Wrighton2,3 and colleagues and R. W. Murray4,5,6 and colleagues in the 1980's to investigate thin film conductive polymers.
Extracellular electron transport (EET) is a process that enables certain microorganisms to transport electrons between intracellular metabolic processes and insoluble electron acceptors or donors that reside outside the cell, ranging from natural minerals to electrodes. In some cases, EET enables microorganisms to form electrically conductive multi-cell thick biofilms on electrode surfaces, in which cells not in direct contact with the electrode can still utilize it as a metabolic electron acceptor or donor. There is considerable interest in such biofilms as electrode catalysts for various applications, such as microbial electrosynthesis, contaminant sensing/removal, and remote energy generation and storage,7,8,9,10,11,12,13,14 due to the diversity of metabolic processes performed by microorganisms and the durability of microbial biofilms compared to enzyme-based bioelectrodes.15,16 In addition, EET pathways may potentially be utilized to electrically control or signal changes in naturally occurring or genetically engineered microbial metabolic processes involved, for example, in production of a desired product or detection of a target analyte or stimulus. The electrical conductivity of electrocatalytic biofilms, which sets them apart from other biological materials, is a central aspect of their electrocatalytic properties, yet little is understood about the underlying EET process in the electrode environment, and that which is known is highly contested.17,18,19,20,21,22,23,24
Described here is a 2-electrode method to measure conductivity through living, electrode-grown biofilms using interdigitated electrode arrays (IDAs). IDAs consist of parallel rectangular electrodes patterned on flat glass surface such that every other band is connected at opposite sides of the array resulting in 2 electrodes (the source and drain). Careful examination of an IDA (see for example, Figure 6.12b of ref #1) reveals that that the gaps separating adjacent bands are also connected in such a way as to form a single gap that weaves back and forth across the array separating the two electrodes. The result is a long and narrow gap separating the source and drain electrodes, yielding very high source-drain currents when a conductive material is formed, cast, polymerized, or grown (in the case of the type of biofilms considered here) over the array. In addition, the small size of the electrodes results in small background current due to capacitance charging and to change in oxidation state of the conductive material with change in gate potential, since the amount of material needed to make conductivity measurements using IDAs is so small. The technique of IDA-based electrochemical gating described here, developed to characterize thin film conductive polymers,2,3,4,25 has only recently been applied to living systems.18 Another technique used to measure conductivity of living biofilms utilized a large format split source and drain electrodes and source meters to set the gate potential.26,27 However, concerns over these methods have been detailed previously.18
The protocol below encapsulates our experience with making conductivity measurements of living Geobacter sulfurreducens and biocathode MCL biofilms. G. sulfurreducens is a model electrode reducing organism able to use insoluble materials, including electrodes, as the sole metabolic electron acceptor. Additionally, it forms thick biofilms that are able to transport electrons over multiple cell lengths, making it an ideal model organism to study anodic long-distance extracellular electron transfer. We also include details for the study of biocathode MCL, an aerobic, autotrophic mixed community biofilm isolated from the cathode of a benthic microbial fuel cell. Biocathode MCL (named for the three primary constituents – Marinobacter, Chromatiaceaea and Labrenzia) is capable of oxidizing an electrode as its sole electron donor and transporting electrons over multiple cell lengths, making it an interesting cathodic system to study. Additionally, biocathode MCL has the highest reported conductivity for a living system to date using these methods. The inclusion of these diverse electroactive biofilms in this protocol is meant to highlight that this technique is applicable to measure the transport of electrons through any living biofilm able to electrically interact with electrodes.
1. Interdigitated microelectrode array (IDA) preparation
2. Electrochemical reactor setup, testing, and inoculation
3. Electrochemical gating experiments
IDAs were wired, insulated and tested to ensure that the two electrodes were electrically isolated from each other (Figure 1). Reactors were assembled, inoculated with G. sulfurreducens, and incubated until a biofilm bridged the gap between the electrodes. The G. sulfurreducens biofilm can be visually seen to be covering the array. Other biofilms may require the researcher to do an electrochemical gating measurements to see if the two electrodes have been electrically connected. Microscopy should also be used to verify connection between the electrodes of the array. Electrochemical gating experiments were carried out to determine the dependence of ISD on EG (Figure 2). The conductivity of the living film is then calculated using the conducted current measured in the gating experiments. The precision and accuracy of these measurements was high due to the high signal to noise ratio possible with the IDA configuration. The temperature dependence of ISD on T was also determined along with an activation energy for electron transport through the biofilm (Figure 2). The results obtained here are similar to those previously observed17,18 and support the hypothesis that G. sulfurreducens and biocathode MCL biofilms behave similarly to redox conductors where electrons are transferred through the biofilm by hopping between redox cofactors close in proximity.
Figure 1: IDA set up and control electrochemical tests. (A) An IDA that has been wired and insulated. Inset: Enlarged imaged of the array showing the interdigitated electrodes and one of the large electrode pads. Separate counter and reference electrodes are placed into the electrochemical cell along with the IDA to perform experiments. (B) Electrochemical control tests exhibiting electrical independence of each electrode. The open circuit potential of electrode 2 does not respond to the changing potential of electrode 1 during CV, indicating that the electrodes are not shorted and can be used for biofilm gating measurements. (C) Same as B, except the potential of electrode 2 does shift during CV of electrode 1, indicating that the electrodes are shorted and should not be used for gating measurements. This IDA was not used in further experiments. Please click here to view a larger version of this figure.
Figure 2: Electrochemical gating experiments. (A) Electrochemical gating measurements of a living, electrode grown G. sulfurreducens biofilm. The peak shaped ISD-EG curve is indicative of incoherent, multi-step electron transport through the biofilm. The conducted current curve was obtained by subtracting the source from the drain current (and dividing by 2) obtained at each gate potential to eliminate background currents. For examples of raw current data taken with VSD = 0 and VSD = 0.01 V, the reader is referred to the Supporting Information of previous work.18 (B) Temperature dependent gating measurementsover a physiologically relevant range exhibiting an increase in the conductivity as the temperature is increased, a property observed for redox conductors.4 (C) Transformation of the ISD – T data and fit to the Arrhenius equation. The linear fit to the Arrhenius equation is indicative of a multi-step electron transfer process. The activation energy for electron transport through a G. sulfurreducens biofilm is calculated from the slope of the curve to be ~0.01 eV, which is consistent with electron transport between redox centers of adjacent c-type cytochromes.32,33,34 Please click here to view a larger version of this figure.
During the setup of the IDA, it is critical to test that the source and the drain are not shorted together prior to electrochemical gating measurements, as this will alter the ISD vs. EG curve and could lead to erroneous results and interpretations. It is also critical to select VSD and v such that the current is linearly dependent on VSD and independent of v. If this is not the case, then the equations described above cannot be utilized to calculate conductivity.
At least two background currents must be considered and removed from conducted current measurements. The first is background current due to Faradaic charging/discharging of the redox cofactors as the gate potential is swept. This background current is greatly affected by the amount of redox cofactors that are electrically accessible connected to the electrode surface. A second background current is double layer capacitance. A third background current is due to turnover of metabolic electron acceptors/donors by cells. This background current is only applicable under turnover conditions. Background currents in this study were eliminated by subtracting the source current from the drain current obtained at VSD = 0.01 V. This method assumes that background currents are equal at both electrodes and source-drain currents are equal in magnitude at both electrodes, but opposite in sign. In this case subtracting the source and drain currents yields a conducted current double in magnitude and should be divided by two. It should be noted that this assumption only holds true in the limit of a small VSD, which is system dependent (for G. sulfurreducens, VSD< 0.05 V). Larger VSD values often results in disparate conditions on each electrode and prevents this method of background subtraction from being used. Alternatively, background currents can be removed by subtracting source and drain currents obtained at VSD = 0.0 V from those obtained at VSD = 0.01 V. This method does not assume that the baseline currents of each electrode are the same.
The technique described here is flexible. Most of the parameters described in the protocol are dependent on the system under study and can be altered. For example, the material and dimensions of the IDA can be varied, the temperature range, and range of gate potentials, among other parameters, can be altered to fit the needs of the specific study. Further, standard microbiological and electrochemical techniques are adapted and utilized, making this protocol suitable for researchers from a variety of fields of study.
Here we have described a protocol for studying electron transport in living, electrode grown, electroactive biofilms using IDAs. IDAs have been used previously to characterize electron transport in thin film conducting polymers and can be fabricated using a variety of standard electrode materials and photolithographic techniques.2 The primary advantage of IDAs is the high signal to noise ratio due to i) the long serpentine gap that separates the alternating source and drain electrode bands and ii) the relatively small total electrode surface area compared to the gap size. The electrode geometry is important to consider in gating measurements because the electrode and gap dimensions have a large effect on the signal to noise ratio and therefore on the accuracy of the conductivity measurements made.18
Electrochemical gating experiments of living, electrode-grown G. sulfurreducens biofilms exhibit a clear peak shaped dependence of ISD on EG, suggesting that electrons are transported through the biofilm via incoherent, multi-step hopping, as in redox conductive polymers.4,35 The peak conductivity of the G. sulfurreducens biofilm was found to be ~4 µS/cm, in agreement with previous results generated under similar conditions.17 Further, the gate potential for peak conductivity is similar to the midpoint potential observed for G. sulfurreducens biofilms during turnover CV.17 This has also been observed previously and is postulated to mean that the same electron carriers used by the cells for transporting electrons resulting from acetate metabolism are also used to carry charge from the source electrode to the drain electrode through the biofilm. Other dependences of ISD on EG, such as have been observed in different materials and suggest a different mechanism of electron transfer. For example, the ISD vs. EG curve of the polymer poly(methylthiophene) shows an s-shaped curve and suggests metallic-like electron conduction.36,37
The temperature dependence of conducted current is a critical parameter in determining the mechanism of electron transport through conductive materials. Until recently, only ex-situ samples had been used to investigate the temperature dependence of conducted current through a biofilm.22 Recent results presented here and elsewhere17 obtained a different ISD – T dependence using gating measurements and therefore predict a multi-step, incoherent hopping mechanism of electron transport through G. sulfurreducens biofilms, which is different than a previously proposed mechanism.22
The major limitation of this technique and other similar geometries when evaluating electron transport through a microbial biofilm is that the charge moves laterally between the source and drain electrodes placed in the same plane on a flat surface. The natural flow of electrons through the biofilm, however, is perpendicular to the electrode surface. Using this technique and model, we approximate the biofilm as a homogenous film and interrogate electron flow through only a portion of the biofilm. Experimental validation of the spatial heterogeneity of the biofilm is still necessary to further validate this technique. However, as described above, this method enables in situ measurements with the highest signal to noise ratio available to date. This technique can be used to study charge transport of any material that is able interact with an electrode.
The authors have nothing to disclose.
M.D.Y, S.M.G-S., and L.M.T. acknowledge the Office of Naval Research (Award #N0001415WX01038 and N0001415WX00195), the Naval Research Laboratory, and the Naval Research Laboratory Nanosciences Institute; M.Y.E.-N. is supported by the U.S. Department of Energy Grant DE-FG02-13ER16415.
IDAs | CH Instruments | 012125 | Manufactured by ALS-Japan; sold by CH Instruments |
Wire | Digikey | W7-ND | |
Conductive silver epoxy | Electron microscopy sciences | 12670-EE | |
Insulating material | 3M | 2131-B | Scotchast flame retardant compound |
15 mL conical centrifuge tube | VWR | 89004-368 | |
21g needle | VWR | BD-305165 | |
5 mL pipette tips | VWR | 82018-842 | |
5 mL pipettor | VWR | 89079-976 | |
Freshwater medium components | Sigma Aldrich | All standard laboratory chemicals | |
Ammonium chloride | |||
Sodium phosphate monobasic | |||
Sodium bicarbonate | |||
Artificial seawater medium components | Sigma Aldrich | All standard laboratory chemicals | |
Sodium chloride | |||
Magnesium chloride hexahydrate | |||
Magnesium sulfate heptahydrate | |||
Potassium chloride | |||
Sodium bicarbonate | |||
Calcium chloride dihydrate | |||
Ammonium chloride | |||
Potassium phosphate dibasic | |||
Ag/AgCl reference electrode | Basi | MF-2079 | |
Graphite rod counter electrode | Electron microscopy sciences | 70230 | |
Recirculating water bath | Thermo Scientific | 152-5256 | |
Bipotentiostat | Pine Instruments | WD-20 | http://www.voltammetry.net/pine/aftermath/user |
Stir bars | VWR | 58947-114 | |
G. sulfurreducens culture | ATCC | 51573 | |
Jacketed reactor | Pine Instruments | RRPG085 |