The rapid development, small size and transparency of zebrafish are tremendous advantages for the study of innate immune control of infection1-4. Here we demonstrate techniques for infecting zebrafish larvae using the fungal pathogen Candida albicans by microinjection, methodology recently used to implicate phagocyte NADPH oxidase activity in control of fungal dimorphism5.
Disseminated candidiasis caused by the pathogen Candida albicans is a clinically important problem in hospitalized individuals and is associated with a 30 to 40% attributable mortality6. Systemic candidiasis is normally controlled by innate immunity, and individuals with genetic defects in innate immune cell components such as phagocyte NADPH oxidase are more susceptible to candidemia7-9. Very little is known about the dynamics of C. albicans interaction with innate immune cells in vivo. Extensive in vitro studies have established that outside of the host C. albicans germinates inside of macrophages, and is quickly destroyed by neutrophils10-14. In vitro studies, though useful, cannot recapitulate the complex in vivo environment, which includes time-dependent dynamics of cytokine levels, extracellular matrix attachments, and intercellular contacts10, 15-18. To probe the contribution of these factors in host-pathogen interaction, it is critical to find a model organism to visualize these aspects of infection non-invasively in a live intact host.
The zebrafish larva offers a unique and versatile vertebrate host for the study of infection. For the first 30 days of development zebrafish larvae have only innate immune defenses2, 19-21, simplifying the study of diseases such as disseminated candidiasis that are highly dependent on innate immunity. The small size and transparency of zebrafish larvae enable imaging of infection dynamics at the cellular level for both host and pathogen. Transgenic larvae with fluorescing innate immune cells can be used to identify specific cells types involved in infection22-24. Modified anti-sense oligonucleotides (Morpholinos) can be used to knock down various immune components such as phagocyte NADPH oxidase and study the changes in response to fungal infection5. In addition to the ethical and practical advantages of using a small lower vertebrate, the zebrafish larvae offers the unique possibility to image the pitched battle between pathogen and host both intravitally and in color.
The zebrafish has been used to model infection for a number of human pathogenic bacteria, and has been instrumental in major advances in our understanding of mycobacterial infection3, 25. However, only recently have much larger pathogens such as fungi been used to infect larva5, 23, 26, and to date there has not been a detailed visual description of the infection methodology. Here we present our techniques for hindbrain ventricle microinjection of prim25 zebrafish, including our modifications to previous protocols. Our findings using the larval zebrafish model for fungal infection diverge from in vitro studies and reinforce the need to examine the host-pathogen interaction in the complex environment of the host rather than the simplified system of the Petri dish5.
All zebrafish care protocols and experiments were performed under Institutional Animal Care and Use Committee (IACUC) protocol A2009-11-01.
1. Morpholino and Larval Injection Dishes
Experimental duration: * (10-15 minutes)
Degree of difficulty: *
2. Fungal Culture Preparation
Experimental duration: **(30 minutes)
Degree of difficulty: **
3. Zebrafish Infections
Experimental duration: **** (1-3 hours)
Degree of difficulty: ****
4. Preparing the Fish for Imaging
Experimental duration: ** (30 minutes)
Degree of difficulty: **
5. Modifications Related to JoVE Protocols
Micropipettes for Microinjection
Experimental duration: * (10-15 minutes)
Degree of difficulty: *
Embryo Collection, Morpholino Injection and Maintenance
Experimental duration: *** (1-2 hours)
Degree of difficulty: ***
Imaging
Experimental duration: *****(1-5 hours)
Degree of difficulty: ***
6. Representative Results
An example of a successful hindbrain ventricle C. albicans infection in a zebrafish larva at 5 hours post-infection (hpi) and 24 hpi is shown in (Figure 1). Macrophage-like cells with engulfed C. albicans are seen in the hindbrain ventricle at 5 hpi. By 24 hpi, C. albicans is inside macrophage-like cells in the dorsal tail tissue indicative of disseminated candidiasis. This infection result is highly dependent upon an accurate injection of 10-15 yeast-form C. albicans into the hindbrain ventricle. Screening of infected fish immediately post-injection can ensure this.
Figure 1. Transgenic fli1:EGFP22, 33 larva infected with CAF2-yCherry Candida albicans and imaged intravitally by confocal microscopy. (A-C) 5 hours post-infection (A) Infected larva with EGFP-expressing macrophage-like cells at the site of infection (hindbrain ventricle) Scale bar =100 μm. (B and C) Higher magnification images of same fish, showing C. albicans within phagocytes. Scale bar = 100 μm for B and 10 μm for C. (D-F) 24 hours post-infection (D) Infected larva with disseminated candidiasis with CAF2-yCherry C. albicans inside EGFP macrophage-like cells in the dorsal tail tissue. Scale bar = 100 μm. (E and F) Higher magnification images of same fish, showing C. albicans in tail tissue. Scale bar = 100 μm.
The zebrafish microinjection method presented here differs from Gutzman et al.34 in that here we demonstrate injection through the otic vesicle into the hindbrain ventricle of 36 to 48 hpf larvae. The method we describe allows for consistent injection of 10-15 yeast into the hindbrain ventricle with reduced tissue damage. This protocol produces an initially local infection that spreads throughout the body by 24 hpi (Figure 1) and results in significant lethality/morbidity5. The hindbrain ventricle is not completely sealed off until 48 hpf27, 29. During this early stage of development macrophages and neutrophils migrate to the site of infection, phagocytose C. albicans, and may move to other parts of the body5.
The true power of this system comes from the ability to combine zebrafish transgenics with fluorescent protein-expressing microbes. We have engineered wild-type and mutant stains of C. albicans to constitutively express mCherry, dTomato, and eqFP650. Combining these expression constructs with oxidative stress-responsive promoters permits the ratiometric quantification of oxidative stress within live zebrafish larvae5. Dual in vivo imaging of fluorescent fungi and fluorescent innate immune cells in the context of a mutant fungus or fish morphant can also be used to robustly quantify altered immune responses such as migration to the site of infection, phagocytosis of the pathogen, prevention of fungal germination, and killing5.
There are several technique-related issues that may be problematic to a novice user of this protocol. First, it is important that the needle is clipped appropriately and the injection pressure is set properly so that 5 nL of C. albicans suspension is microinjected. To ensure this one can check that the bolus coming out of the needle is the size of the pupil of a prim25 zebrafish larva, as described in section 3.8. It is critical that the zebrafish larvae receive the same amount of injectant, which can be confirmed by screening immediately post-infection by epifluorescence to verify that there are 10-15 yeast present in the hindbrain ventricle. Injected fish can also be homogenized and plated for verification of initial colony forming units5. Second, it is important to avoid puncturing blood vessels in the hindbrain ventricle, as this causes premature death of the larva. It is important to inject into the otic vesicle with an approximate 45-degree angle, ensuring direct microinjection into the hindbrain ventricle. Third, take extra care not to tear or damage the otic vesicle tissue, which can result in increased inflammation to the infection site that is independent of pathogen infection. Fourth, injections must be performed quickly once larvae are positioned on the agarose injection dish. Larvae left too long on the dish will dry out, and if this occurs there will be mortality in the PBS-injected fish. Completing the infections within 15 minutes and leaving a residual amount of water on the dish while infecting fish can both help to ameliorate this problem. However, leaving too much water on the dish can make injections more difficult with drifting larvae. An alternative method of injection described for older (4 dpf) fish that is more complex but avoids exposing larvae to air is provided by Cosentino and colleagues28.
The zebrafish larva has to date been used to model innate immune responses to bacterial, fungal and viral pathogens5, 26, 35-46. These groundbreaking studies have established the utility of this model system for discovering new cellular and molecular mechanisms in both host and pathogen. Taken together with this described protocol, these other published works provide a basis for other laboratories to examine host-fungal interaction in the context of an intact host.
Although useful in these experiments, the fli1:EGFP transgenic line described here does have its limitations. The fli1 gene is expressed in endothelial vasculature in addition to macrophage-like cells22. Often the EGFP fluorescence of the vasculature can make it hard to detect C. albicans in macrophage-like cells. In addition, EGFP expression in macrophage-like cells becomes reduced around 18-24 hours post infection making it difficult to detect. A recently published macrophage-specific transgenic zebrafish line has many advantages as a model for macrophage studies23.
The described infection technique provides an entrée to a number of powerful genetic and fluorescence microscopy tools available in the zebrafish. It can be combined with appropriate transgenic fish and engineered C. albicans to enable the quantification of many aspects of host-pathogen interaction, including the number of neutrophils and macrophages containing C. albicans, the frequency of C. albicans digestion, and the division of C. albicans within innate immune cells5. One can also combine this protocol with the use of morpholino antisense oligonucleotides to test the role of individual innate immune genes in infection5.
The authors have nothing to disclose.
The authors would like to thank the laboratory of Dr. Carol Kim for microinjection training, Clarissa Henry for advice on speeding up embryo development and use of equipment, and Nathan Lawson for contributing fli1:EGFP fish. We thank members of the Wheeler lab and Shawn Walls for critical reading of the manuscript. We would also like to thank Mark Nilan for fish care and advice, and Ryan Phennicie and Kristin Gabor for technical advice on this project. This work was funded by a MAFES research assistantship to K. Brothers, a MAFES Hatch grant E08913-08, and a NIH NCRR award P20RR016463 to R. Wheeler.
Name of the reagent | Company | Catalog number | Comments (optional) |
Spawning tanks | Aquatic habitats | 2L | |
1.7 mL tubes | Axygen | MCT-175-C | |
Instant Ocean | Fisher Scientific | S17957C | |
Extra deep Petri dishes | Fisher Scientific | 08-757-11Z | |
Standard Petri dishes | VWR Scientific | 25384-302 | |
Transfer pipettes | Fisher Scientific | 13-711-7M | |
Yeast Extract | VWR Scientific | 90000-726 | |
Peptone | VWR Scientific | 90000-264 | |
Dextrose | Fisher Scientific | D16-1 | |
Agar | VWR Scientific | 90000-760 | |
Disposable Hemocytometer | VWR Scientific | 82030-468 | |
Phosphate Buffered Saline | VWR Scientific | 12001-986 | |
Dumont Dumoxel Tweezers | VWR Scientific | 100501-806 | |
Wooden Dowels | VWR Scientific | 10805-018 | |
KimWipes | VWR Scientific | 300053-964 | |
Low Melt Agarose | VWR Scientific | 12001-722 | |
Agarose for injection dishes | VWR Scientific | 12002-102 | |
Flaming Brown Micropipette Puller | Sutter Instruments | P-97 | |
Hollow glass rods | Sutter Instruments | BF120-69-10 | For glass rods smooth glass by heating over bunsen burner |
Pipette Storage Box | Sutter Instruments | BX10 | |
MPPI-3 Injection system | Applied Scientific Instrumentation | MPPI-3 | |
Back Pressure Unit | Applied Scientific Instrumentation | BPU | |
Micropipette Holder kit | Applied Scientific Instrumentation | MPIP | |
Foot Switch | Applied Scientific Instrumentation | FSW | |
Micromanipulator | Applied Scientific Instrumentation | MM33 | |
Magnetic Base | Applied Scientific Instrumentation | Magnetic Base | |
Tricaine methane sulfonate | Western Chemical Inc. | MS-222 | |
Dissecting Scope | Olympus | SZ61 top SZX-ILLB2-100 base | |
Confocal Microscope | Olympus | IX-81 with FV-1000 laser scanning confocal system | |
TC-7 Tissue Culture Roller drum with 14 inch test tube wheel | New Brunswick Scientific | TC-7 | |
Imaging Dishes | MatTek Corporation | P24G-1.0-10-F | |
Pipette tips for loading needles | Eppendorf | 930001007 | |
Plate pouring grids | Adaptive Science Tools | TU-1 | |
Heated Stage | Bioptechs Inc. | Delta T-5 | |
Flat Spatula | VWR Scientific | 82027-486 | |
Plastic Sieves | Wares of Knutsford Online | 12 cm | |
Parafilm | VWR Scientific | 52858-000 | |
Vortex Genie | VWR Scientific | 14216-184 | |
16 x 150 mm Culture tubes | VWR Scientific | 60825-435 | |
Nanodrop | Thermo Scientific | ND 2000 | |
Phenol Red | VWR Scientific | 97062-478 | |
HCl | VWR Scientific | 87003-216 | |
NaCl | VWR Scientific | BDH4534-500GP | |
KCl | VWR Scientific | BDH4532-500GP | |
MgSO4 | VWR Scientific | BDH0246-500GP | |
Ca(NO3)2 | VWR Scientific | BDH0226-500GP | |
HEPES | VWR Scientific | BDH4520-500GP | |
Morpholinos | GeneTools, LLC |