Despite recent advancements in genetic modification, transfection of human embryonic stem cells (HESCs) remains a capricious process. To our knowledge, systematic and efficient methods to transfect human induced pluripotent stem cells (iPSCs) have not been reported. Here, we describe robust protocols to efficiently transfect and nucleofect human iPSCs.
Genetic modification is continuing to be an essential tool in studying stem cell biology and in setting forth potential clinical applications of human embryonic stem cells (HESCs)1. While improvements in several gene delivery methods have been described2-9, transfection remains a capricious process for HESCs, and has not yet been reported in human induced pluripotent stem cells (iPSCs). In this video, we demonstrate how our lab routinely transfects and nucleofects human iPSCs using plasmid with an enhanced green fluorescence protein (eGFP) reporter. Human iPSCs are adapted and maintained as feeder-free cultures to eliminate the possibility of feeder cell transfection and to allow efficient selection of stable transgenic iPSC clones following transfection. For nucleofection, human iPSCs are pre-treated with ROCK inhibitor11, trypsinized into small clumps of cells, nucleofected and replated on feeders in feeder cell-conditioned medium to enhance cell recovery. Transgene-expressing human iPSCs can be obtained after 6 hours. Antibiotic selection is applied after 24 hours and stable transgenic lines appear within 1 week. Our protocol is robust and reproducible for human iPSC lines without altering pluripotency of these cells.
Our protocol begins with a method to adapt human iPSCs to feeder-free cultures, followed by protocols for transfecting human iPSCs using GeneJuice (EMD) and nucleofection of human iPSCs using an AMAXA nuclefector device.
Note: The following procedures are performed in a sterile laminar flow hood. All media and solutions are equilibrated to 37°C or room temperature before starting unless otherwise specified.
1. Establishing human iPSCs on feeder-free system
Human iPSCs previously maintained on feeder cells can be split, transferred onto Geltrex-coated dish and maintained for two passages prior to feeder-free transfection.
Note: Geltrex, like Matrigel is a soluble form of basement membrane matrix purified from murine Engelbreth-Holm-Swarm (EHS) tumor cells. Alternatively, Matrigel can be used as an extracellular matrix to establish feeder-free human iPSC cultures.
To passage human iPSCs, add 1 ml of accutase per well and incubate at 37°C for 1 min until most cells start to detach.
2. Transfection of human iPSCs with GeneJuice
Cells (grown on 6-well plates) should be approximately 40 -50% confluent on the day of transfection to achieve optimal transfection efficiency. It is not necessary to change the cell medium until the next day.
3. Nucleofection of human iPSCs
Human iPSCs grown on feeders or Geltrex can be used for nucleofection. However, we strongly recommend replating nucleofected human iPSCs onto mouse embryonic fibroblast (MEF) or human foreskin fibroblast (HFF) feeders to ensure high cell viability and recovery. At least 2 million cells should be used to achieve higher cell survival following nucleofection.
Note: Any mouse strain used for preparing feeder layers (such as BLK6, CF1 and MF1) is suitable to be used for making CM.
Note: Trypsinization into single cells should strictly be avoided. Cells should only be dislodged into small clumps of cells consisted of approximately triplets of cells. Small clumps of cells (cell triples) will be dissociated into single cells during the subsequent handling of the cells.
<> will be displayed when the nucleofection process is completed (usually only takes 1-5 seconds). The use of other nucleofection programs (A-023, A-033 and U-023) yielded less than 10% of eGFP-positive cells from human iPSCs.
4. Representative Results:
Figure 1. Photomicrographs of Riv1 human iPSCs transfected with pCAG-eGFP. (A) eGFP-expressing Riv1 cells transfected using GeneJuice on Geltrex 12 hours post-transfection. Colonies of Riv1 human iPSCs plated and formed on feeders following nucleofection using B-016 (B) and A-023 (C) program. (D) Stably eGFP-expressing human iPSC colonies with ubiquitous eGFP expression derived from GeneJuice. (E) Stably-transfected Riv1 human iPSCs retained constitutive eGFP expression during embryoid body differentiation.
Our protocols result in simple, robust and highly reproducible techniques to introduce transgenes into human iPSCs without prominent toxic effect and cell death. Human iPSCs should be passaged into smaller clumps of cells (5-10 cells) and plated on Geltrex at high density (1:2) to ensure optimal transfection efficiency in numerous small colonies. For human iPSC lines that are more prone to differentiation and cell death, higher number of human iPSCs (up to 4 X 106 cells) should be used for a single nucleofection experiment. Transient transfection assay generates large numbers of transgene-expressing human iPSCs within 1 day. Stably transfected iPSC clones usually appear within 7 days, and these transgenic colonies should be ready to be picked within three weeks. The use of CAG promoter described here ensures ubiquitous expression of eGFP reporter. Under such improvements, our protocols can be fed into other applications, including overexpression, conditional induction, derivation of lineage-specific reporter lines, shRNA or siRNA knockdown, gene targeting and homologous recombination.
The authors have nothing to disclose.
Work described in this manuscript was made possible by funding from the California Institute for Regenerative Medicine (CIRM) for UCR Stem Cell Core.
Name of reagent | Company | Catalogue number | Comments |
0.25% Trypsin with EDTA | Invitrogen | 25200056 | |
2-Mercaptoethanol | Invitrogen | 21985-023 | |
3 mm glass beads | Fisher Scientific | 11-312A | Glass beads should be washed with hydrochloric acid (HCl) overnight, rinsed off with sodium hydroxide (NaOH) and distilled water, and sterilized by autoclave before use. |
Accutase cell dissociation reagent | Invitrogen | A11105-01 | |
Basic fibroblast growth factor (bFGF) | Invitrogen | PHG0263 | |
DMEM (high glucose) | Lonza | 12-741 F | |
Fetal calf serum | Invitrogen | 16000044 | |
Geltrex | Invitrogen | 12760013 | Growth factor reduced |
GeneJuice transfection reagent | EMD Biosciences | 70967 | |
Glutamax-I (100X) | Invitrogen | 35050061 | L-Glutamine (Invitrogen, 25030081) can also be used instead. |
Human iPSC KOSR media | 500 ml human ES media consists of 390 ml KnockOut DMEM/ F12, 100 ml KnockOut Serum Replacer, 5ml Glutamax-I (100X), 5ml NEAA (100X), 500 μl 2-Mercaptoethanol (55mM) and supplemented with 10 ng/ml bFGF. | ||
KnockOut DMEM/F12 | Invitrogen | 12660-012 | |
KnockOut Serum Replacement (KOSR) | Invitrogen | 10828-028 | |
Mouse embryonic fibroblast media | MEF media consists of 90% FBS, 1X NEAA, 1X Glutamax-I and 1X sodium pyruvate in DMEM (high glucose) | ||
Non essential amino acid, NEAA?(100X) | Invitrogen | 11140050 | |
Human stem cell nucleofector solution 1 with supplement | Lonza | VAPH-5012 | |
Phosphate Buffered Saline without Ca2+ and Mg2+ | Invitrogen | 10010023 | |
Sodium pyruvate (100X) | Invitrogen | 11360070 | |
STEMPRO medium kit | Invitrogen | A1000701 | 500 ml STEMPRO media consists of 454 ml KnockOut DMEM/ F12, 10 ml STEMPRO serum-free growth supplement (50X), 5ml Glutamax-I (100X), 5ml NEAA (100X), 36 ml BSA (Bovine serum albumin, 25%), 909 μl 2-Mercaptoethanol (55mM) and supplemented with 10 ng/ml bFGF. |