The present manuscript details how to isolate hippocampal arterioles and capillaries from the mouse brain and how to pressurize them for pressure myography, immunofluorescence, biochemistry, and molecular studies.
From subtle behavioral alterations to late-stage dementia, vascular cognitive impairment typically develops following cerebral ischemia. Stroke and cardiac arrest are remarkably sexually dimorphic diseases, and both induce cerebral ischemia. However, progress in understanding the vascular cognitive impairment, and then developing sex-specific treatments, has been partly limited by challenges in investigating the brain microcirculation from mouse models in functional studies. Here, we present an approach to examine the capillary-to-arteriole signaling in an ex vivo hippocampal capillary-parenchymal arteriole (HiCaPA) preparation from mouse brain. We describe how to isolate, cannulate, and pressurize the microcirculation to measure arteriolar diameter in response to capillary stimulation. We show which appropriate functional controls can be used to validate the HiCaPA preparation integrity and display typical results, including testing potassium as a neurovascular coupling agent and the effect of the recently characterized inhibitor of the Kir2 inward rectifying potassium channel family, ML133. Further, we compare the responses in preparations obtained from male and female mice. While these data reflect functional investigations, our approach can also be used in molecular biology, immunochemistry, and electrophysiology studies.
The pial circulation on the surface of the brain has been the object of much study, partly because of its experimental accessibility. However, the topology of the cerebral vasculature creates distinct regions. In contrast to the robust pial network rich in anastomoses with substantial capacity for redirecting the blood flow, the intracerebral parenchymal arterioles (PAs) present limited collateral supply, each of them perfusing a discrete volume of nervous tissue1,2. This creates a bottleneck effect on the blood flow which, combined with unique physiological features3,4,5,6,7,8, makes intracerebral arterioles a crucial site for cerebral blood flow (CBF) regulation9,10. Despite the technical challenges inherent to the isolation and cannulation of PAs, the last decade has seen an increased interest in ex vivo functional studies using pressurized vessels11,12,13,14,15,16,17. One of the reasons for this increased interest is the considerable research effort conducted on neurovascular coupling (NVC), the mechanism sustaining the brain functional hyperemia18.
Regionally, CBF can rapidly increase following local neural activation19. The cellular mechanisms and signaling properties controlling NVC are incompletely understood. However, we identified a previously unanticipated role for the brain capillaries during NVC in sensing neural activity and translating it into a hyperpolarizing electrical signal to dilate upstream arterioles20,21,22. Action potentials23,24 and opening of large-conductance Ca2+-activated K+ (BK) channels on the astrocytic endfeet25,26 increase the interstitial potassium ion concentration [K+]o, which results in activation of strong inward rectifier K+ (Kir) channels in the vascular endothelium of capillaries. This channel is activated by external K+ but also by hyperpolarization itself. Spreading through gap junctions, the hyperpolarizing current then regenerates in adjacent capillary endothelial cells up to the arteriole, where it causes myocyte relaxation and CBF increase20,21. The study of this mechanism led us to develop a pressurized capillary-parenchymal arteriole (CaPA) preparation to measure the arteriolar diameter during capillary stimulation with vasoactive agents. The CaPA preparation is composed of a cannulated intracerebral arteriole segment with an intact, downstream capillary ramification. The capillary ends are compressed against the chamber glass bottom by a micropipette, which occludes and stabilizes the entire vascular formation20,21.
We previously made instrumental innovations by imaging CaPA preparations from the mouse cortex20,21 and arterioles from the rat amygdala13 and hippocampus16,17. As the hippocampal vasculature receives more attention due to its susceptibility to pathological conditions, here we provide a step-by-step method for CaPA preparation from the mouse hippocampus (HiCaPA) that can not only be used in functional NVC studies but also in molecular biology, immunochemistry, and electrophysiology.
All experiments were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of Colorado, Anschutz Medical Campus and were performed according to the guidelines from the National Institutes of Health.
1. Solutions
2. Organ chamber preparation
3. Hippocampus dissection and isolation
4. Hippocampal arteriole isolation
5. Hippocampal capillary-parenchymal arteriole cannulation
6. Pressure myography
7. Focal stimulation of capillary ends
Endothelial small-conductance (SK) and intermediate-conductance (IK) Ca2+-sensitive K+ channels exert a dilatory influence on the diameter of PAs. Bath application of 1 µM NS309, a synthetic IK and SK channel agonist, caused near maximal dilation (Figure 2A,B). However, capillary endothelial cells lack IK and SK channels and did not hyperpolarize in response to NS30920. As a result, stimulating capillary ends with 1 µM NS309 by focal pressure ejection (20 s, 5 psi) did not cause upstream arteriolar dilation (Figure 2A,B). This result indicates that NS309 did not reach the arteriole in the HiCaPA preparations and could be used as a control to assess the spatial restriction of the compound applied onto capillaries by pressure ejection.
This preparation was fundamentally designed for the measurement of inside-out electrical signaling from capillaries to PAs. Using the HiCaPA preparation, we applied aCSF containing 10 mM K+ onto the capillary ends and measured an upstream arteriolar dilation (Figure 2A,C) as we previously did in CaPA preparations from the cortical vasculature20. We then investigated, for the first time to our knowledge, capillary-to-arteriole electrical signaling in female mice using HiCaPA preparations. Arteriolar dilation evoked by capillary stimulation with 10 mM K+ did not differ between preparations from male and female mice (Figure 2A,C).
Finally, another fundamental benefit of this approach is the possibility to apply pharmacological tools in the bath before capillary stimulation. Here we tested the effect of ML133, a recently developed Kir2 inhibitor28. Addition of 10 µM ML133 to the bath perfusion virtually abolished capillary-induced arteriolar dilation in response to 10 mM K+ in HiCaPA preparations from both male and female mice (Figure 2A,C). This last result suggests that the Kir2.1 channel mediates electrical signaling in female cerebral vasculature as we previously described in the cortical microcirculation of the male brain.
Figure 1: Methodology for isolation and pressurization of hippocampal capillary-parenchymal arterioles (HiCaPA) preparation from mouse. (A) Freshly isolated brain is cut in half in the sagittal plane following the interhemispheric fissure and placed with the medial side facing up. (B) The thalamus, septum, and hypothalamus are gently removed to reveal the hippocampus. (C) The hippocampus is carefully removed. (D) Arterioles with capillary trees are isolated from the hippocampus and one end of the arteriolar segment is cannulated with a micropipette connected to a pressurizing system, and the other end is occluded. Capillary ends are sealed and maintained against the coverslip with the tip of a glass pipette. Internal diameter is monitored with an edge detection system in one or several regions of the arteriole. Please click here to view a larger version of this figure.
Figure 2: Focal stimulation of capillaries with 1 µM NS309 has no effect on upstream arteriolar diameter, unlike stimulation with aCSF containing 10 mM K+. (A) Representative recording of the upstream arteriolar diameter showing the effect of bath application of 1 µM NS309 followed by successive capillary ends stimulation (20 s, 5 psi) with 1 µM NS309 and with aCSF containing 10 mM K+ in the absence or presence of the Kir2 channel inhibitor ML133. Application of 10 mM K+ onto capillaries produced a rapid upstream arteriolar dilation that was blocked by 10 µM ML133. NS309 did not cause dilation. The absence of upstream arteriolar dilation in response to capillary stimulation with NS309 illustrates that pressure-ejected compounds do not reach the arteriole. (B) Summary data showing diameter changes induced by 1 µM NS309 applied in the bath or on the capillary ends (n = 14; ****p < 0.0001, paired t-test). (C) Summary data showing arteriolar diameter changes induced by 10 mM K+ applied directly onto the capillaries in HiCaPA preparations from male (n = 6) or female (n = 8) mice before and after 10 µM ML133 was applied in the bath (***p < 0.0005, n.s. = nonsignificant, unpaired t-test). Please click here to view a larger version of this figure.
The pressurized HiCaPA (hippocampal capillary-parenchymal arteriole) preparation described in the present manuscript is an extension of our well-established procedure to isolate, pressurize, and study parenchymal arterioles29. We recently reported that Kir2.1 channels in brain capillary endothelial cells sense increases in [K+]o associated with neural activation, and generate an ascending hyperpolarizing signal that dilates upstream arterioles20. Revealing this previously unanticipated role for the capillaries has been possible in part by developing the CaPA preparation from cortical microcirculation20,21. This manuscript presents a similar experimental approach but from a deeper and more restricted structure of the mouse brain to describe a simple and reproducible approach to investigate capillary-to-arteriole signaling during neurovascular coupling.
The brain microcirculation is exquisitely fragile and certain practices, especially minimizing stretching and handling of the vessels, must be used to ensure the survival of the arterioles and capillaries. The spontaneous development of the myogenic tone is the first indicator of a preparation's viability30. The endothelial function can then be assessed by adding the SK and IK channels' agonist NS309 to the bath solution, which should cause near maximum dilation. In case of a failure to develop tone or response to the bath application of NS309, the preparation should be replaced with another one. NS309 is also used to test the spread of the focal capillary stimulation. Because capillary endothelial cells lack SK and IK channels20, local delivery of NS309 onto capillaries by pressure ejection should have no effect on upstream arteriolar diameter as displayed in Figure 2, illustrating that compounds do not accidentally stimulate the arteriole. Once these steps are validated, capillary-to-arteriole signaling can be tested.
Here we examined electrical signaling by stimulating capillaries with aCSF containing 10 mM K+. However, different signaling modalities can be explored using the present approach by stimulating capillaries with different known vasoactive agents or neurotransmitters. Another benefit of this preparation is the possibility to investigate and eventually compare NVC between different animals and between different brain regions. This is particularly interesting because the brain is not uniformly targeted by cerebrovascular pathologies31,32. A general limitation of the approach presented here is that by isolating the microcirculation, crucial components of the neurovascular unit, such as neurons and astrocytes, are lost. Other preparations, such as the cranial window for in vivo CBF imaging, maintain the structure of the intact neurovascular unit and are more appropriate to study NVC in an intact system. However, in the cranial window preparation, parenchymal arterioles are difficult to image without specific equipment, like a multiphoton microscope, and deeper regions, such as the hippocampus, remain difficult to image. In this regard, the approach developed in the Filosa laboratory using luminal flow to induce myogenic tone in brain slices represents an elegant link between brain slice and in vivo approaches33. However, the surrounding nervous tissue can limit the penetration of a drug applied topically, increasing its off-target potential and making interpretations difficult, because several cell types are exposed to the drugs. We primarily developed our ex vivo approach to address these potential issues. In conclusion, multiple approaches should be used in conjunction to fully study NVC.
In summary, the present report describes an ex vivo intact preparation of pressurized hippocampal arterioles and capillaries that allows the effects of pharmacological and biological agents to be tested on functional parameters at discrete positions along the capillary-arteriole continuum.
The authors have nothing to disclose.
The authors would like to thank Jules Morin for insightful comments on the manuscript. This research was funded by awards from the CADASIL Together We Have Hope non-profit organization, the Center for Women's Health and Research, and the NHLBI R01HL136636 (FD).
0.22µm Syringe Filters | CELLTREAT Scientific Products | 229751 | |
12-0 Nylon (12cm) Black | Microsurgery Instruments, Inc | S12-0 NYLON | |
Automatic Temperature Controller | Warner Instruments | TC-324B | |
Borosilicate Glass O.D.: 1.2 mm, I.D.: 0.68 mm | Sutter Instruments | B120-69-10 | |
Bovine serum albumin | Sigma-Aldrich | A7030 | |
CaCl2 dihydrate | Sigma-Aldrich | C3881 | |
D-(+)-Glucose | Sigma-Aldrich | G5767 | |
Dissection Scope | Olympus | SZ11 | |
ECOLINE VC-MS/CA 4-12 — complete Pump with Drive and MS/CA 4-12 pump-head | Ismatec | ISM 1090 | |
EGTA | Sigma-Aldrich | E4378 | |
Fine Scissors – Sharp | Fine Science Tools | 14063-09 | |
Inline Water Heater | Warner Instruments | SH-27B | |
Integra™ Miltex™Tissue Forceps | Fisher Scientific | 12-460-117 | |
KCl | Sigma-Aldrich | P9333 | |
KH2PO4 | Sigma-Aldrich | P5379 | |
Magnesium sulfate heptahydrate | Sigma-Aldrich | M1880 | |
MgCl Anhydrous | Sigma-Aldrich | M8266 | |
Micromanipulator | Narishige | MN-153 | |
ML 133 hydrochloride | Tocris | 4549 | |
MOPS | Sigma-Aldrich | M1254 | |
NaCl | Sigma-Aldrich | S9625 | |
NaH2PO4 | Sigma-Aldrich | S9638 | |
NaHCO3 | Sigma-Aldrich | S8875 | |
NS309 | Tocris | 3895 | |
Picospritzer III – Intracellular Microinjection Dispense Systems, 2-channel | Parker Hannifin | 052-0500-900 | |
Pressure Servo Controller with Peristaltic Pump | Living Systems Instrumentation | PS-200 | |
Sodium pyruvate | Sigma-Aldrich | P3662 | |
Super Fine Forceps | Fine Science Tools | 11252-20 | |
Surgical Scissors – Sharp-Blunt | Fine Science Tools | 14001-13 | |
Vertical Micropipette Puller | Narishige | PP-83 |