We present an optimized local ejection procedure using a glass micro-pipette and a fast two-photon hyperstack imaging method, which allows precise measurement of capillary diameter changes and investigation of its regulation in three dimensions.
Maintenance of normal brain function requires a sufficient and efficient supply of oxygen and nutrition by a complex network of vessels. However, the regulation of cerebral blood flow (CBF) is incompletely understood, especially at the capillary level. Two-photon microscopy is a powerful tool widely used to study CBF and its regulation. Currently, this field is limited by the lack of in vivo two-photon microscopy studies examining (1) CBF responses in three-dimensions, (2) conducted vascular responses, and (3) localized interventions within the vascular network. Here, we describe a 3D in vivo method using two-photon microscopy to study conducted vascular responses elicited by local ejection of ATP with a glass micro-pipette. Our method uses fast and repetitive hyperstack two-photon imaging providing precise diameter measurements by maximal intensity projection of the obtained images. Furthermore, we show that this method can also be used to study 3D astrocytic calcium responses. We also discuss the advantages and limitations of glass micro-pipette insertion and two-photon hyperstack imaging.
The brain has a high energy consumption rate. About 20% of the oxygen and 25% of the glucose consumed by the human body are dedicated to brain function, while the brain only occupies 2% of the total body mass. Maintenance of normal brain function requires a sufficient and efficient supply of oxygen and nutrition by blood flow in a complex network of vessels. Local brain activity and cerebral blood flow (CBF) are robustly coupled, depending on the functional properties of neurons, astrocytes, pericytes, smooth muscle cells (SMCs) and endothelial cells (ECs)1. Recently, the first few orders of capillaries branching from penetrating arterioles have emerged as a 'hotspot'2, showing active regulation of capillary blood flow. A slow conducted vascular response (CVR) was discovered at this 'hotspot' in mouse somatosensory cortex during both whisker stimulation and local ejection (puffing) of ATP with a glass micro-pipette3.
Although in vivo imaging by two-photon laser scanning fluorescent microscopy has been widely used for studying neurovascular responses in cerebral cortex, most of the studies measured blood vessel diameters and investigated their regulation in a two-dimensional (2D) x-y plane. The challenges are: Firstly, cerebral blood vessels and their embracing astrocytes, pericytes and SMCs construct branches in three dimensions (3D). It is therefore crucial to study their interactions in 3D. Secondly, even a small amount of drift in focus will affect the precise measurement of both vessel diameters and cellular fluorescent signals. Finally, CVRs are fast and far-reaching in three dimensions. 3D volume scanning is optimal for detecting CVRs and unveiling their mechanisms. We implemented a piezo motor objective in a two-photon microscope to study mouse somatosensory cortex in vivo, allowing precise diameter measurements by maximal intensity projections of the obtained images.
Glass micro-pipettes have frequently been used for in vivo brain studies, e.g., to bulk-load organic dyes4, record EEGs5 and for patch clamping6. Nonetheless, limitations remain. Commonly, the tip of the glass micro-pipette is imprecisely placed, or the micro-pipette is not used for local interventions. Here, we have optimized the procedure of micro-pipette insertion and local ejection.
Furthermore, the combination of 3D two-photon microscopy and genetically-encoded fluorescent indicators offers an unprecedented opportunity to investigate neurovascular coupling in a 3D scope. In this study, we took advantage of this and injected viral vectors carrying astrocyte specific genetically-encoded calcium indicators into the mouse somatosensory cortex. Astrocytes as well as vessel diameters were imaged simultaneously by combining different fluorescent markers.
Overall, we present an optimized method of local ejection (puffing) by glass micro-pipette and fast two-photon hyperstack imaging, which allows precise measurement of capillary diameter changes. In addition, our method provides a novel tool to simultaneously study 3D profiles of Ca2+ responses in astrocytes and vascular diameter responses.
All procedures involving animals were approved by the Danish National Ethics Committee according to the guidelines set forth in the European Council’s Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes and were in compliance with the ARRIVE guidelines. This is a terminal procedure with the mice being euthanized prior to anesthetic recovery.
1. Pre-surgical preparation
2. Surgical procedure
3. First two-photon imaging session
4. Insertion of the glass micro-pipette
5. Hyperstack two-photon imaging
6. Data processing
7. Viral vector injection
Once the surgery was complete, mice were transported to two-photon microscope (Figure 1A). A glass micro-pipette containing 1 mM ATP was inserted in proximity of the destination blood vessel at the target location (Figure 1B).
We performed hyperstack imaging while giving a puff of 1 mM ATP (Figure 2A, Supplementary Video 1). Each image stack was flattened to one image by maximal intensity projection (Figure 2B). Rectangular ROIs were placed perpendicularly across the vessel to measure vessel diameter change upon ATP puffing (Figure 2C). Vessel diameters were measured using Chan-Vese segmentation (Figure 2D). In single puff recordings, normalized diameter changes at each ROI were overlaid to compare the responses of different vessel segments (Figure 2E). The distance from each ROI to the penetrating arteriole was calculated by hand-drawing the vascular skeleton (Figure 2F). Amplitudes and latencies of dilation and constriction at each ROI in single puff recordings were plotted over the calculated distances from the ROIs to the penetrating arteriole (Figure 2H-K). Vasodilation upon puffing propagated linearly with a speed of 14.69 µm/s (upstream) and of 2.8 µm/s (downstream), starting from the junction of 1st and 2nd order capillaries (Figure 2H). Vasoconstriction also propagated linearly at 3.92 µm/s, starting from the penetrating arteriole (Figure 2I). Maximal amplitude of both vasodilation and vasoconstriction occurred in 1st order capillaries (Figure 2J-K).
Furthermore, combining astrocyte-specific viral vector-carrying fluorescent calcium indicators and two-photon hyperstack imaging, astrocytic calcium responses to ATP puffing were investigated (Figure 3A, Supplementary Video 2). Rectangular ROIs were placed at astrocytic somata and processes. ATP induced a rise in intracellular calcium in astrocytic processes but not in astrocyte somata (Figure 3B).
Figure 1: Diagram of in vivo two-photon 3D imaging and glass micropipette puffing. (A) The anesthetized mouse is head-fixed to a metal bar and mechanically ventilated. End-tidal CO2 is monitored by a capnograph. Both whisker pad stimulation and micro-pipette puffing are used to induce vascular diameter changes. The glass micro-pipette holder is mounted on the stage plate. The femoral artery and vein are catheterized to monitor blood pressure and blood gases, and to infuse anesthesia and fluorescein, respectively. (B) The glass coverslip covers the craniotomy at an angle, which allows free movement of the pipette. The puffing micro-pipette is placed in proximity of a penetrating arteriole and its capillaries and contains a mixture of 10 µM Alexa 594 (red color in glass micro-pipette) and 1 mM ATP. The two-photon imaging is a fast and repetitive 3D volume scanning that includes the penetrating arteriole and the first few order capillaries, as well as neighboring astrocytes and pericytes. (C) Representative images of red fluorescent protein (RFP) and green fluorescent protein (GFP) using epi-fluorescent illumination are shown. They are used as ‘maps’ during pipette insertion. Red circles mark locations of 1st order capillaries with >5% vasodilation during whisker pad stimulation. Scale bar: 50 µm. Please click here to view a larger version of this figure.
Figure 2: ATP puffing by micro-pipette induces vessel dilation, followed by constriction. (A) Cascade of planes in one representative image stack including penetrating arteriole and 1st and 2nd order capillaries. Pericytes are labeled with a red fluorophore (NG2-DsRed) and the vessel lumen is labeled with FITC-dextran (green). (B) Maximal intensity projection of the image stack. (C) Multiple uniquely colored regions of interest (ROIs) placed perpendicularly across the vasculature to measure the vessel diameter. (D) Top, representative fluorescent intensity over time at the dark blue ROI from panel C. The two red curves define the edges of the vessel wall. The vertical distance between the two red curves is the vessel diameter and is shown as a function of time (bottom). (E) Normalized diameter changes over time at each ROI in response to 1 mM ATP puffing. Measurements are based on a single experiment. (F) The vascular skeleton was manually traced by placing nodes along the vessels. (G) Amplitudes of dilation or constriction were defined as maximal positive or negative vascular response, respectively, during the recording session. The latency of dilations and constrictions were reported as time to half positive or negative maximum after puffing onset. (H-K) Graphs show the latency of dilation (H), the latency of constriction (I), the amplitude of dilation (J), and the amplitude of constriction (K) of all the ROIs shown in panel C versus the distance of each ROI from the penetrating arteriole. The dashed lines represent the linear fitting of upstream and downstream conductive responses. p.a.: penetrating arteriole. Scale bar: 10 µm. Please click here to view a larger version of this figure.
Figure 3: ATP puffing by micro-pipette induces astrocytic calcium activities. (A) Astrocytic viral vectors carrying a fluorescent calcium indicator were injected in mouse somatosensory cortex three weeks prior to the experimental procedure. Image shows vessel lumina labeled with TRITC-dextran (red) and astrocytic calcium in green. (B) Multiple ROIs are placed at astrocytic somata and processes. Upon 1 mM ATP puffing, intracellular calcium increased in astrocytic processes but not in somata (dotted boxes), where calcium levels larger than the mean plus 1.5 x standard deviation were defined as significant. Scale bar: 10 µm. Please click here to view a larger version of this figure.
Supplementary Video 1: Time-series movie flattened from hyperstack imaging of vessels in response to puffing of 1 mM ATP. Green: FITC-dextran, staining vessel lumen. Red: NG2DsRed, staining pericytes. Please click here to view this video. (Right-click to download.)
Supplementary Video 2: Time-series movie flattened from hyperstack imaging of astrocytic calcium in response to puffing of 1 mM ATP. Green: astrocytic calcium. Red: TRITC-dextran, staining vessel lumen. Please click here to view this video. (Right-click to download.)
One challenge for vascular studies is the precise measurement of vessel diameters. The method we describe here used a motorized piezo objective to make fast and repetitive hyperstack imaging by two-photon microscopy. Firstly, this method allows repeated examinations of the penetrating arteriole, 1st order and 2nd order capillaries without loss of focus and led to the discovery of slowly conducted vascular responses in capillaries in vivo. Secondly, in combination with a viral vector injection technique, it enables us to investigate astrocytic calcium responses in three dimensions, which is necessary for studies of blood flow regulation.
This method is not without limitations. Firstly, a narrow rectangular field of view is defined before the 3D imaging in order to achieve high temporal resolution. This usually limits the imaging to first three orders of capillaries. Secondly, lasers of two-photon microscopes must be perfectly aligned. Laser misalignment will falsely de-center each frame and increase the vessel diameter measurement. Thirdly, the sampling rate of 3D imaging is capable of capturing slow CVRs and slow calcium changes in astrocytes. 1-2 Hz per stack is still not fast enough to study fast CVRs11 or fast calcium signals in astrocytes12,13.
Furthermore, in order to affect vessels of interest locally, we have optimized the procedure of precise insertion of a glass micro-pipette into a specific location of the mouse cerebral cortex. There are several critical steps for successful application of this method. Firstly, the angle of the glass micro-pipette holder must be carefully adjusted. It should allow the micro-pipette to freely maneuver beneath the objective and the glass coverslip above the exposed cortex. Secondly, during insertion of the glass micro-pipette into the agarose layer and the cortex, a small holding pressure is necessary to keep the pipette tip unclogged. However, caution must be exerted not to apply too great a holding pressure so that the compound does not leak before puffing. Thirdly, the puffing of the pipette should be tested in agarose layer above the brain to find the optimal pressure and duration releasing enough puffing compound upon one puff while not introducing an obvious displacement of cells and vessels due to mechanical pressure.
In order to make more precise measurement of CVR speed, volume scanning speed should be improved. There are other newly-developed volume-scanning microscopes, for example, a two-photon microscope with an acoustic optical deflector (AOD) scans as fast as 5 volumes per second with the same spatial resolution and volume size (email communication). Light-sheet microscopes scan even a larger volume size (350 µm x 800 µm x 100 µm) with 10 volumes per second14.
Our mouse preparation also has limitations. Acute mouse surgery may have potential complications. Pain relief medicine and anesthesia may affect the neurovascular responses. Acute neuroinflammation can also be triggered, resulting in microglial activation and leukocytosis in cortical tissues and vessels. Although the tip size of glass micro-pipettes is usually very small (<1 µm), the insertion procedure and ATP puffing could also potentially trigger microglial migration and embracement of insertion site within 0.5-1 hour post-insertion.
In conclusion, combination of 3D imaging in two-photon microscopy and localized puffing glass micro-pipette is an advanced tool to study neurovascular activities and their mechanism.
The authors have nothing to disclose.
This study was supported by the Lundbeck Foundation, the NOVO-Nordisk Foundation, the Danish Council for Independent Research | Medical Sciences, and the NORDEA Foundation Grant to the Center for Healthy Aging.
Agarose | Sigma–Aldrich | A6138 | Apply upon exposed cortex for protection |
Alexa 594 | Life Technologies | A-10438 | Stain puffing compound to red fluorescent color |
ATP | Sigma-Aldrich | A9187 | Vasodilator and vasoconstrictor, puffing compound |
Cyanoacrylate glue and activator | Loctite | Adhesives and SF7452 | Glue for metal piece and coverglass |
Eye lubricant | Neutral Ophtha, Ophtha A/S, Denmark | Keep the mouse eyes moisterized | |
FITC-dextran | Sigma-Aldrich | FD500S | Blood serum dye, green fluorescent color |
NG2DsRed mice | Jackson Laboratory | 8241 | These transgenic mice express an red fluorescent protein variant (DsRed) under the control of the mouse NG2 (Cspg4) promoter |
pZac2.1 gfaABC1D-lck-GCaMP6f | Addgene | 52924-AAV5 | Astrocyte specific viral vectors carrying genetically encoded calcium indicators |
TRITC-dextran | Sigma-Aldrich | 52194 | Blood serum dye, red fluorescent color |
List of Equipments | |||
Air pump | WPI | PV830 | Give air pressure to pipette puffing |
Blood gas analyzer | Radiometer | ABL 700 | Measure levels of blood gases |
Blood pressure monitor | World Precision Instruments | BP-1 | Monitor aterial blood pressure |
Body temperature controller | CWE | Model TC-1000 | Keep the mouse body temperature in physiological range |
Capnograph | Harvard Apparatus | Type 340 | Monitor the end-expiratory CO2 from the mouse |
Electrical stimulator | A.M.P.I. | ISO-flex | Apply whisker pad stimulation |
Mechanical ventilator | Harvard Apparatus | D-79232 | Mechanically ventilate the mouse in physiological range |
Micropipette puller | Sutter Instrument | P-97 | |
Two-photon microscope | Femtonics Ltd | Femto3D-RC | |
List of Surgical Instruments | |||
Anatomical tweezer | Lawton | 09-0007 | |
Angled and balanced tweezer | S&T AG | 00595 FRAS-18 RM-8 | |
Iris scissor | Lawton | 05-1450 | |
Micro vascular clamp | S&T AG | 462 | |
Mouse vascular catheters | Verutech | 100828 |