Ultrasound imaging has become a common modality to determine the luminal dimensions of thoracic and abdominal aortic aneurysms in mice. This protocol describes the procedure to acquire reliable and reproducible two-dimensional ultrasound images of the ascending and abdominal aorta in mice.
Contemporary high-resolution ultrasound instruments have sufficient resolution to facilitate the measurement of mouse aortas. These instruments have been widely used to measure aortic dimensions in mouse models of aortic aneurysms. Aortic aneurysms are defined as permanent dilations of the aorta, which occur most frequently in the ascending and abdominal regions. Sequential measurements of aortic dimensions by ultrasound are the principal approach for assessing the development and progression of aortic aneurysms in vivo. Although many reported studies used ultrasound imaging to measure aortic diameters as a primary endpoint, there are confounding factors, such as probe position and cardiac cycle, that may impact the accuracy of data acquisition, analysis, and interpretation. The purpose of this protocol is to provide a practical guide on the use of ultrasound to measure the aortic diameter in a reliable and reproducible manner. This protocol introduces the preparation of mice and instruments, the acquisition of appropriate ultrasound images, and data analysis.
Aortic aneurysms are common vascular diseases characterized by a permanent luminal dilation of the thoracic and/or abdominal aorta1,2,3,4. No pharmacological therapies have been established to prevent the dilation and rupture of aortic aneurysms, which emphasizes the need for insights into pathogenic mechanisms. To elucidate the mechanisms of aortic aneurysms, mouse models produced by genetic or chemical manipulations have been widely used4,5,6,7,8,9,10,11,12. The accurate quantification of the aortic diameter in mice is the basis of aortic aneurysm research.
The development of high-frequency ultrasound has increased the spatial and temporal resolution of images to detect small differences in aortic dimensions13,14,15. This has enabled the sequential measurement of aortic diameters in mice, and thus, it has become the preferred method for measuring aortic diameters in murine studies of aortic aneurysms. Although ultrasound imaging is a simple technique, knowledge of aortic anatomy and physiology is required to acquire appropriate images for accurate measurements, data analysis, and interpretation. The aorta is a pulsating cylindrical organ with variable curvatures in the proximal thoracic region16. This contributes to the potential for an inaccurate determination of aortic dimensions in the commonly acquired two-dimensional (2D) images. The accuracy of aortic measurements could be compromised further by aortic tortuosity in aneurysmal state17. To obtain reliable and reproducible measurements of aortic dilations, this protocol provides a practical guide for the use of a high-resolution ultrasound system to measure proximal thoracic and abdominal aortic diameters in mice.
Ultrasound imaging in mice is performed with approval of the University of Kentucky Institutional Animal Care and Use Committee (IACUC protocol number: 2018-2967). During the imaging, the mice are anesthetized using isoflurane 1%–3% vol/vol and placed on a heating platform to reduce procedural stress and prevent hypothermia. Eye lubricant is applied to prevent corneal damage due to the loss of the blink reflex during anesthesia.
1. Equipment Setup
2. Preparation of the Mouse
3. Imaging of the Thoracic Aorta
4. Imaging of the Abdominal Aorta
5. Postscanning Mouse Care and Cleanup
6. Analysis
Representative ultrasound images of nonaneurysmal proximal thoracic and abdominal aorta are shown in Figure 3A and Figure 3C, respectively. The ascending aorta is located next to the pulmonary artery and forms a curved tube with three branches in the arch region: the innominate artery, the left common carotid artery, and the left subclavian artery (Figure 3A). The abdominal aorta is detected dorsally to the inferior vena cava (Figure 3D). Representative images of thoracic and abdominal aortic aneurysms with profound dilations, as compared with normal diameters in Figure 3A and Figure 3D, are shown in Figure 3B and Figure 3H, respectively. All ultrasound images were captured at end-diastole.
Representative thoracic and abdominal aortic ultrasound images were captured at the midsystole and end-diastole (Figure 4A,C,E,G). Representative images showing measurements are presented in Figure 4B,D,F,H. The green line in the center of the ascending aorta was used for standardizing the aortic sinus and ascending aortic diameter (Figure 4B,D). Lines were drawn perpendicularly to the green line between the two inner edges of the lumen at the aortic sinus (yellow line) and the maximal ascending aortic diameter (red line). The luminal diameters of the thoracic and abdominal aortas were different between systole and diastole (Figure 4A-H). For the abdominal aorta, the maximal aortic diameter (red) and luminal area (green) were measured (Figure 4F,H). A representative image of the monitor electrocardiogram is shown in Figure 4I. The cardiac cycle needs to be considered for accurate measurements. The end-diastole and systole are indicated by the white dotted and pink lines, respectively.
To validate the accuracy and reproducibility of this protocol, we performed a pilot study. Representative thoracic aortic ultrasound and ex vivo images are shown in Figure 5A. There was no major difference in diameters measured between these images for the ascending aortic diameter (ultrasound: 1.67 mm vs. ex vivo: 1.65 mm). Since the aortic sinus was difficult to see in the ex vivo image, the aortic sinus diameter was not measured ex vivo. The inter- and intraobserver reproducibility of this protocol are shown in Figure 5B,C. To determine potential variabilities, ultrasound imaging was performed by two observers independently, namely by an experienced cardiologist and a nonexperienced undergraduate student who is learning this technique, on two different days, using the same mice (n = 5). All dots were located between the mean ± 1.96 SD in Figure 5B,C, which indicates no major inter- or intraobserver variabilities for this protocol.
Figure 1: Workstation setup. The workstation includes the induction chamber for anesthesia, anesthetic scavenging filters, the heated platform, the ultrasound gel, and the gel warmer. Please click here to view a larger version of this figure.
Figure 2: Examples of probe placement for proximal thoracic and abdominal aortic imaging. Probe placement for (A) the right and (B) the left parasternal long axis view of the aortic root, ascending and arch regions, and (C) the short axis view of the abdominal aorta. (D) A representative monitor image of the ultrasound system. The black arrows indicate the reference marker on the probe. The yellow arrow indicates the side of the reference marker. Please click here to view a larger version of this figure.
Figure 3: Representative ultrasound images of the thoracic and abdominal aorta. (A) Nonaneurysmal and (B) aneurysmal ascending aorta, from the right parasternal long axis view. (C) Nonaneurysmal ascending aorta, from the left parasternal long axis view. (D) Nonaneurysmal and (E) aneurysmal abdominal aorta. Asc Ao = ascending aorta, IA = innominate artery, LCA = left common carotid artery, LSA = left subclavian artery, PA = pulmonary artery, Sinus = aortic sinus, IVC = inferior vena cava, and Abd Ao = abdominal aorta. The yellow triangles indicate an aortic aneurysm. Please click here to view a larger version of this figure.
Figure 4: Measurements of aortic images. Images of the thoracic aorta captured at(A) the midsystole and (C) the end-diastole. Images showing measurements of aortic diameters in the proximal thoracic aortic region during (B) midsystole and (D) diastole. The green line indicates the center of the ascending aorta. The yellow and red lines indicate diameters of the aortic sinus and ascending aorta, respectively. Digits in yellow and red colors indicate actual diameters of the aortic sinus and ascending aorta, respectively. Images of abdominal aorta captured at (E) the midsystole and (G) the end-diastole. Images showing measurements of the suprarenal aorta during (F) midsystole and (H) end-diastole. The red and green lines indicate the diameter and luminal area of the abdominal aorta, respectively. Digits in red and green colors indicate the actual diameter and are of the abdominal aorta, respectively. (I) Monitor electrocardiogram (ECG) recorded during the image acquisitions. The green and yellow lines indicate the ECG and respiratory cycle, respectively. The white dotted line indicates the end-diastole, and the purple line indicates systole. P = P wave and R = R wave. Please click here to view a larger version of this figure.
Figure 5: Accuracy and reproducibility of ultrasound imaging. (A) Representative images of thoracic aortic ultrasound and ex vivo images in C57BL/6J male mice (10-12 weeks old). Bland-Altman plots show (B) inter- and (C) intraobserver variabilities of this protocol. Asc Ao = ascending aorta, IA = innominate artery, LCA = left common carotid artery, LSA = left subclavian artery, PA = pulmonary artery, and Sinus = aortic sinus. The green line indicates the center of the ascending aorta. The yellow and red lines indicate the diameters of the aortic sinus and ascending aorta, respectively. Digits in red colors denote the actual diameters of the ascending aorta measured in ultrasound and ex vivo images. The black dotted lines indicate the mean and mean ± 1.96 SD. Please click here to view a larger version of this figure.
Supplemental Figure 1: Example image of ultrasound analysis software. Ultrasound data analysis must be performed in (A) measurement mode. One aortic ultrasound image is selected for analysis from the cine loop using (B) the slider of a cine loop. The center line is drawn using (C) the traced distance function. The aortic dimension is measured by (D) the linear distance function. Please click here to view a larger version of this figure.
This protocol provides a technical guide for the image acquisition of the thoracic and abdominal aorta in mice, using a high-frequency ultrasound system. Ultrasound aortic imaging has potential confounders, such as probe position and cardiac cycle, that may compromise the accuracy of the aortic measurements, particularly in the proximal thoracic aorta. This protocol describes detailed instructions and strategies for image acquisition, measurement, and data analysis, in order to accurately measure aortic dimensions.
For imaging the proximal thoracic aorta, there are several approaches to probe placement. The right parasternal long axis view shown in Figure 2A was used for ultrasound imaging in this protocol. This view facilitates the acquisition of high-quality images from the aortic sinus to the aortic arch portion. It is not optimal for the descending aorta because of interference of the ultrasonic waves. This protocol is applicable to most mouse models of thoracic aortic aneurysms because they exhibit luminal dilation predominantly in the aortic root to the ascending aorta. This includes chronic angiotensin II infusion that causes aneurysm formation in the ascending aorta of mice18,19,20,21,22,23. Mouse models of Marfan syndrome (fibrillin 1C1041G/+ and fibrillin 1mgR/mgR mice) display both aortic root and ascending aortic dilation23,24,25. Loeys-Dietz syndrome mouse models (postnatal deletion of TGF-β receptor 1 or 2 in smooth muscle cells) also develop aneurysm in the aortic root and ascending aorta18,26,27,28. Therefore, the right parasternal long axis view is appropriate for aortic imaging in these mouse models of thoracic aortic aneurysms. On the other hand, the right parasternal short axis view has the potential to capture aortic images diagonally because aneurysms are often complicated by aortic tortuosity, which may cause an overestimation of diameters. Unlike the thoracic aorta, the short axis view was used for the imaging of the abdominal aorta in this protocol. Since aortic curvature and tortuosity are modest in the abdominal aorta compared to the thoracic aorta, the acquisition of images in the short axis view ameliorates underestimations of the aortic diameter. It is important to note that different probe positions provide different viewing angles, and the aortic diameter may be different in each view angle. Therefore, reliable aortic diameter measurements are enhanced by applying the same probe position for all images within a study. Interestingly, three-dimensional (3D) ultrasound images of the heart and aorta have been reported recently29,30,31,32. In addition, current ultrasound systems can obtain 3D images over time as four-dimensional images33. Thus, these 3D imaging technologies have the potential to demonstrate the aortic structure more precisely, which may solve the problem of probe positioning.
Ultrasound images can be captured in either 2D brightness mode (B-mode) or one-dimensional motion mode (M-mode). Although some articles have used M-mode for the measurement of aortic diameter, B-mode is preferable15,34,35,36. M-mode has the capacity to image in two dimensions to increase temporal and spatial resolution. However, this mode relies on the assumption that the aorta is a concentric cylinder being imaged perpendicularly to the ultrasonic waves. This assumption may not hold true in an aneurysmal state and the curvature of the ascending aorta makes this difficult, even in nonaneurysmal states. In addition, the aorta does not remain in a fixed position throughout the cardiac cycle37. Therefore, M-mode may cause measurement errors, including over- and underestimations.
It is also important to note that the cardiac cycle affects the luminal diameter in the aorta. As expected, the aortic diameter in systole is greater than in diastole (Figure 4A-H), which is associated with aortic wall elasticity and strain. Aortic wall elasticity and strain can be calculated from the difference of aortic diameters between systole and diastole. Elasticity and strain are decreased in aneurysmal aortas compared to normal aortas31,34,35,38,39,40. Aortic stiffness cannot be measured directly by ultrasound. Measuring pulse wave velocity (PWV) can evaluate its stiffness as a proxy, which is reported to be increased in aneurysmal aortas31,35,41,42. PWV is calculated by the transit time between two arterial sites, using pulse wave Doppler images and their corresponding distance. For comparing aortic diameters, unlike clinical examination, there is no rigorous standardization in terms of cardiac phase for aortic measurements in mice. Therefore, it is still unclear which cardiac phase is appropriate for aortic measurements. However, to ensure reliable and reproducible comparisons, aortic diameters should be measured in a defined phase of the cardiac cycle.
This protocol provides detailed instructions for aortic imaging and data analysis in order to measure aortic dimensions accurately. The aortic measurement, using this protocol, was consistent with the actual ex vivo aortic diameter (Figure 5A). We also confirmed consistencies of inter- and intraobserver reproducibility (Figure 5B,C). All steps in this protocol, especially probe position and cardiac cycle, are necessary for accurate measurements. However, even when using appropriate procedures, artifacts during ultrasound imaging are unavoidable. The location of ribs and lung, as well as respiration and cardiac pulsation, can affect the image quality of the thoracic aorta. Intestinal gas can also cause artifacts in abdominal imaging. Thus, we suggest defining exclusion criteria when following this protocol in case of poor aortic images.
With the advent of high-resolution ultrasound systems, the aortic structure of mice can be examined in exquisite detail, both serially and conventionally, thereby greatly contributing to the understanding of aortic aneurysms. Ultrasound imaging, with the protocol as described above, is a reliable and reproducible noninvasive approach for quantifying aortic aneurysms in mice.
The authors have nothing to disclose.
The authors' research work was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under award numbers R01HL133723 and R01HL139748 and the American Heart Association SFRN in Vascular Disease (18SFRN33960001). H.S. is supported by an AHA postdoctoral fellowship (18POST33990468). J.C. is supported by NCATS UL1TR001998. The content in this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Name of Reagent | |||
Isothesia (Isoflurane) | Henry Schin | NDC11695-6776-2 | Anesthetic Agent |
Omnicon F/Air Anesthesia Gas Filter Canister | A.M. Bickford Inc. | 80120 | Scavenging System for Anesthesia |
Puralube Vet Ointment | Dechra | NDC17033-211-38 | Lubricating Eye Drops |
Aquasonic | Parker Laboratories | 01-08 | Ultrasound Gel |
Nair | Nair | Depilliating Cream | |
Transeptic Transducer Cleaning Solution | Parker Laboratories | 341-09-25 | Cleaning spray for probes |
Name of Equipment | |||
Vevo 2100 | VisualSonics | Vevo 2100 | Ultrasound Machine |
Vevo LAB 3.0.0 | VisualSonics | Vevo LAB 3.0.0 | Ultrasound Analysis Software |
MS-550D | VisualSonics | MS-550D | Ultrasound Probe |
EX3 Vaporizer | Patterson Veterinary | EX 3 | Analogue Anestheic Vaporizer |
Heating Pad | Sunbeam | E12107 | Heating Pad |