This protocol describes a method for investigating the possibility of metamemory, or memory awareness, in rodents. The odor-based delayed-matching-to-sample paradigm is a novel, ecologically-relevant behavioral test useful for determining the extent to which rodents can adaptively respond based on cognitively monitoring the strength of their memory states.
Metamemory involves the cognitive ability to assess the strength of one's memories. To explore the possibility of metamemory in non-human animals, numerous behavioral tasks have been created, many of which utilize an option to decline memory tests. To assess metamemory in rats, we utilized this decline-test option paradigm by adapting previous visual delayed-match-to-sample tests (DMTS)1,2 developed for primate species to an odor-based test suitable for rodents. First, rats are given a sample to remember by digging in a cup of scented sand. After a delay, the rat is presented with four distinctly scented cups, one of which contains the identical scent experienced during the sample; if this matching cup is selected, then the rat obtains a preferred, larger reward. Selection of any of the other three non-matching sand-filled scented cups results in no reward. Retention intervals are individually titrated such that subjects perform between 40 and 70% correct, therefore ensuring rats sometimes remember and sometimes forget the sample. Here, the operational definition of metamemory is the ability to distinguish between the presence and absence of memory through behavioral responding. Towards this end, on two-thirds of trials, a decline option is presented in addition to the four choice cups (choice trials). If the decline-test option- an unscented colored sand cup, is selected, the subject receives a smaller less-preferred reward and avoids the memory test. On the remaining third of trials, the decline-test option is not available (forced trials), causing subjects to guess the correct cup when the sample is forgotten. On choice tests, subjects that know when they remember should select the decline option when memory is weak rather than take the test and choose incorrectly. Therefore, significantly higher performance on chosen tests as compared to forced memory tests is indicative of the adaptive use of the decline-test response and metacognitive responding.
Metamemory is the ability to assess the strength of one's memories2,3,4. While humans have consistently demonstrated this cognitive ability, there is debate over the existence of metamemory in non-human animals e.g.5,6. One common method for testing for the possibility of metamemory is to present nonhuman animals with a decline-test option, which, if selected results in a guaranteed, but smaller reward than the reward for a correct response to the test. If subjects can monitor their memory states, then they should decline tests when their memories are weak (for reviews see:7,8,9,10).
Over the past few decades, procedures developed for human and nonhuman primates11 and pigeons12 have been adapted in several ways to further test for the presence of metamemory in monkeys1,2,13. Perhaps the most seminal study of metamemory in monkeys was Hampton's1 delayed match-to-sample test (DMTS). After training in the MTS task, delays between the sample and test were titrated so that the difficulty level was intermediate such that monkeys had a chance of remembering and forgetting the sample. Following the delay, monkeys were presented with the option to decline the test. Results showed that subjects performed significantly more accurately on trials in which they chose to take the test than on forced trials, suggesting that monkeys monitored their memory strength of the sample1.
Most metamemory paradigms tested thus far have utilized visual or auditory stimuli, which is not surprising given that the most widely tested species have been highly visual nonhuman primates e.g.11,14. Of the previous limited research that exists on metacognition in rats, the sensory modality used has also been visual or auditory15,16,17,18. Given the recent robust evidence for metacognitive responding when an odor-based task was used19, it is possible that the previous equivocal results in rats could have been due to the lack of standardized paradigms used. We designed a paradigm19 which capitalized on rat's primary sense, olfaction, by adapting the DMTS paradigm similar to the one used in monkeys described above1. The task described here involves digging in sand-filled cups to obtain a food reward, taking advantage of rodent's natural digging behavior.
Metamemory can be assessed in rats using the odor-based DMTS task presented here. First, a hierarchy of food rewards is established so subjects demonstrate a clear preference for a more valued reward. Rats are then trained to dig in a cup of scented sand to obtain a reward. Following the presentation of a scented sample cup, subjects must choose one of four distinctly scented cups. A reward is buried at the bottom of the cup with the same scent as the sample. After rats are proficient on the basic MTS tests, retention intervals (RIs) are titrated for each rat so that performance falls between a 40% and 70% success rate. On 2/3 of the trials, rats are given the choice to decline the memory test for a less preferred reward. Rats' metacognitive ability is assessed by comparing performance on trials in which the decline-test option is presented (choice trials) to trials in which rats are forced to take the test (forced trials).
While only Long-Evans rats were tested in this paradigm, the task could be used to test other strains of laboratory rats and mice to further study metamemory in rodent species. It will also be beneficial to test aged rodents or transgenic mice with Alzheimer's disease pathologies to better understand how memory disorders affect metacognitive processes.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of Providence College.
1. Creating the Testing Apparatus
2. Developing Preferred Food Reward Hierarchy/Preference Testing
3. General Methods
4. Training to Dig in Sand Cups and Habituation to Testing Apparatus
5. Match-to-Sample (MTS) Training
6. Delay Titration in Delayed Match to Sample (DMTS)
7. Decline Use Training
8. Testing: Forced vs. Choice Trials
9. Suggested Generalization Tests
10. Data Analysis
In order to study the metacognitive responding of the subject, the proportion of correct forced trials (baseline memory performance) is compared with the proportion of correct chosen trials, or trials in which there is a decline option present. Positive results are indicated by significantly higher accuracy on chosen trials as compared to forced trials (Figure 2A). These results indicate that rats may be monitoring their memory states and declining the task when their memories are weak, leading to an increase in accuracy when a decline option is present on chosen trials.
If performance is not significantly more accurate on chosen trials as compared to forced trials, results are null. This hypothetical lack of evidence for metamemory in rats (Figure 2B) is indicated by failure to use the decline-test option when it would have been adaptive to do so: on trials in which the sample was forgotten.
If generalization tests are run, metacognitive performance would be indicated if subjects decline no-sample trials significantly more normal sample trials and decline double sample trials significantly more than normal sample trials. Decline use should show an inverse relationship with memory accuracy as indicated on accuracy on forced trials. If accuracy on forced tests does not vary with trial condition, change parameters (e.g. increase RI) as it is impossible to determine if subjects are or are not behaving metacognitively. On mixed delays tests, accuracy on chosen tests should be significantly higher than accuracy on forced tests and subjects should be more likely to decline tests with longer RIs and least likely to decline tests with shorter RIs. See results paper for more details on generalization tests and respective interpretations19.
Figure 1. Photograph of experimental apparatus and process. A) Photograph of apparatus adapted from19 with permission. B) Experimental process. The first step of habituation, teaching rats to dig in sand-filled cups, takes place over two nights. Next, the rats are habituated to the experimental apparatus and are trained to dig in sand-filled cups there. Subjects are then given the choice of two rewards, represented as a green triangle and red crescent (whole piece of cereal vs. a quarter piece of cereal). After rats show a significant preference for one reward, they transition to MTS training, in which cups are filled with scented sand, represented by images of cinnamon, paprika, thyme, and coffee. If the success rate is below 50% for two sessions, the subject continues training. If the success rate of the rats is at 50% or above, the subject progresses to delay titration. During delay titration, rats continue with MTS training, but a delay between the sample and test is introduced (starting with 0 s). If rats' memory accuracy is above 70%, then the RI is increased. If accuracy falls below 40%, the RI is decreased, and MTS training continues. This loop continues until rats' accuracy falls between 40% and 70% for two consecutive sessions. At this point, rats progress to the experimental test which consists of randomly intermixed forced and choice trials. Please click here to view a larger version of this figure.
Figure 2. Positive results indicating metacognitive responding and hypothetical null results indicating lack of metacognitive responding. A) Positive results adapted from 19 with permission. The average proportion correct of forced and chosen trials was derived from the performance of 9 rats on 120 trials each. *=p<.05 on paired two-tailed t-test. A significantly higher proportion of trials answered correctly on chosen trials as compared to forced trials indicates the appropriate use of the decline-test response. B) An equivalent proportion of trials answered correctly on forced and chosen trials indicates lack of declining tests on the basis of memory strength. Chance, 0.25, is indicated by the dotted line. Error bars represent standard error of the means. Please click here to view a larger version of this figure.
Presented here is a novel method for assessing metacognitive responding in rats using an odor-based DMTS task. Due to olfaction as rodents' primary sense, the use of odor is preferable to visual cues in rats and mice 20,21. The use of digging in the sand is a natural foraging behavior of rats, making the task ecologically-relevant for rodent species.
A crucial step in the protocol is ensuring that there is a hierarchy of food rewards, one of which is clearly preferred over the other. During early phases of the study, rats were required to choose between the presumed to be preferred reward, a piece of sweetened cereal, and small standard food pellet. However, preference testing yielded indiscriminate choice behavior, causing the use of quantity as the source of reward variation. Rats chose between a whole piece of cereal and a ¼ piece of cereal, and reliably favored the larger quantity. Without a preference, whether food quality or quantity, there is no incentive to take the test over declining it, so this step is crucial.
Another important aspect of the protocol is establishing proper RIs and ITIs so that MTS accuracy remains within the range of 40 to 70% correct. If delays are too short, and interference is minimal- due to long ITIs, rats never experience "forgetting" the sample. Conversely, if RIs are too long and the ITIs are too short, the test becomes too difficult and rats never remember the sample. Such responses can be detected not only by accuracy on forced trials but by decline rates that are either too high or too low. Subjects should decline about 10-50% of choice trials: if a subject declines every trial or never declines, data cannot be interpreted as positive or negative for the presence of metamemory and the relative value of the decline-test response needs to be re-evaluated. Throughout the experiment, average performance on forced trials is consistently calculated at the end of two days of testing. As rats' progress through more trials of DMTS, their performance may improve, which would initiate a return delay titration (see Figure 1B) such that delays can be appropriately increased such that accuracy remains below 70% correct. If memory for the sample is consistently above 70% consider decreasing the ITI. If memory for the sample is consistently below 40% consider increasing the ITI and/or increasing the odor sample size from four to 10-20 odors to decrease memory interference.
Depending on the strain of rats used, housing environment, and light-dark cycle animals are housed in, memory may be weaker or stronger. Compared to other laboratory rat strains, such as Wistar or Sprague Dawleys, Long Evans are known to acquire cognitive tasks with relatively fewer trials22,23. It may, therefore, take more stages of habituation, and more training for other rodents to learn the task. Rats in the present study were housed in highly enriched environments with access to exercise so it is possible their memories were relatively strong24,25,26. Rats used here were also housed on a reversed light-dark cycle which may increase cognitive performance since they were tested during their dark cycle.
Adaptive use of the decline-test response, indicated by significantly higher performance on choice as compared to forced tests suggests metacognitive responding. However, metacognitive responding could result from reliance on internal memory cues or external cues8. To determine if in fact adaptive use of the decline-test response is the result of internal memory cues, experimenters should aim to eliminate as many external cues as possible8,14. External cues are considered any publicly available test-specific stimuli or cues that subjects could use to guide decline-test use8. Potential external cues in this task include relative salience of individual odors, sample duration, response latency, and duration of RIs. Generalization tests as described here and in more detail the results paper19 are useful in ruling out behavioral responding based on external cues like environmental cue associations due to cue inconsistency in task parameters across experiments.
In this paradigm, the rat is required to make the decision to take or decline the test before the memory test is presented (see 8.2), largely eliminating the potential for response competition to control use of the decline-test response. Response competition is the propensity to take the test based on the sight or smell of the correct test option when the metacognitive choice is presented concurrently with the primary memory test8. Requiring rats to choose to take or decline the test before encountering the memory test itself significantly reduces the possibility that response competition controls use of the decline-test response. However, one improvement to this design would be to have rats choose to take or decline the test by making a particular response in a room separate from the memory test itself. This would further increase the prospective nature of this paradigm, which may allow for the more successful elimination of external cues8,19. An additional improvement for future studies is to, if possible, record response latency at the point when the rat enters the testing room to the time it takes for the subject to turn left or turn right (decline or take the test, respectively). This would allow the researchers to determine if response latency served as an external cue subjects learned to associate with particular responses overtime (see8). It would also be enlightening to record if and when subjects change their response (see 8.2; e.g. travel from the MTS choice side of the room to the decline test area or vice versa). As discussed in the results paper, we observed this behavior only once, which adds to the conclusion that rats made a decision to take or decline the test as soon as they entered the testing room and before they encountered the memory test itself, which they did by systematically sampling each choice odor.
Because rats tested in this paradigm transferred metacognitive responding across multiple generalization tests, it was concluded that rats were capable of metamemory- they could monitor their memories for the sample19. It will be important for other research groups to test this paradigm or similar adaptations of it as corroborating evidence from different laboratories is needed before it can be concluded with certainty that rats are capable of metacognitive responding and that behavior is controlled by an internal rather than external cue. Testing for the presence of this important mnemonic ability, which degrades with age, may prove useful in translational approaches to studying memory dysfunction, such as with transgenic mice and models of Alzheimer's disease. It would be especially fruitful for researchers to employ this behavioral paradigm in conjunction with brain lesions, temporary brain inactivation's or activations (e.g. optogenetics, chemogenetics), and with electrophysiological recordings, as these investigations may elucidate the neural mechanisms underlying metacognitive processes.
The authors have nothing to disclose.
We thank Rebecca Burwell for the use of her laboratory during video recording and Robert Vera for help with a previous version of this manuscript.
Froot loops | Kellogg's | B00I8QZ4HM | Sweetened cereal |
Sociability Chamber | Noldus Technologies | 46503 / 46553 | |
Black Contact Paper | Con-Tact | B000KKMO90 | |
Cardboard | |||
Ceramic small animal dishes | Norpro | B00061N0QO | 7 cm. in diameter and 3.8 cm tall |
Play sand | ACTIVA | B004BNBXJ4 | White Sand |
Duct Tape | 3M | B001HT720O | Black duct tape |
Cinnamon | Simply Organic | FNTR07824 | Amazon |
Coffee | Folgers | B016KZTPJU | Amazon |
Paprika | Simply Organic | B06XB9QGVB | Amazon |
Thyme | Simply Organic | 579193 | Amazon |
Colored Sand | Sandtastik Products | B000Q4O9UW | Orange sand |
70% isopropyl alcohol | Swan | B00HKDI6WO | Amazon |
Dust buster (vacuum) | Black + Decker | B01DAI5BZ2 | Cordless vacuum |
Metal tracks | Home Depot | EC751BA | Used for door in chamber |
Spatula | Chef Craft | B00B0M5LQK | Bent at a right angle to lower sample cup into testing apparatus |