Here, we present experimental and analytical procedures to describe the temporal dynamics of the neural and cardiac variables of non-REM sleep in mice, which modulate sleep responsiveness to acoustic stimuli.
Three vigilance states dominate mammalian life: wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. As more neural correlates of behavior are identified in freely moving animals, this three-fold subdivision becomes too simplistic. During wakefulness, ensembles of global and local cortical activities, together with peripheral parameters such as pupillary diameter and sympathovagal balance, define various degrees of arousal. It remains unclear the extent to which sleep also forms a continuum of brain states-within which the degree of resilience to sensory stimuli and arousability, and perhaps other sleep functions, vary gradually-and how peripheral physiological states co-vary. Research advancing the methods to monitor multiple parameters during sleep, as well as attributing to constellations of these functional attributes, is central to refining our understanding of sleep as a multifunctional process during which many beneficial effects must be executed. Identifying novel parameters characterizing sleep states will open opportunities for novel diagnostic avenues in sleep disorders.
We present a procedure to describe dynamic variations of mouse non-REM sleep states via the combined monitoring and analysis of electroencephalogram (EEG)/electrocorticogram (ECoG), electromyogram (EMG), and electrocardiogram (ECG) signals using standard polysomnographic recording techniques. Using this approach, we found that mouse non-REM sleep is organized into cycles of coordinated neural and cardiac oscillations that generate successive 25-s intervals of high and low fragility to external stimuli. Therefore, central and autonomic nervous systems are coordinated to form behaviorally distinct sleep states during consolidated non-REM sleep. We present surgical manipulations for polysomnographic (i.e., EEG/EMG combined with ECG) monitoring to track these cycles in the freely sleeping mouse, the analysis to quantify their dynamics, and the acoustic stimulation protocols to assess their role in the likelihood of waking up. Our approach has already been extended to human sleep and promises to unravel common organizing principles of non-REM sleep states in mammals.
Mammalian sleep is a behavioral state of rest and of resilience to environmental stimuli. In spite of this apparent uniformity, polysomnographic and autonomic parameters indicate that sleep moves between qualitatively and quantitatively different neural and somatic states on various temporal and spatial scales1. Over minutes to tens of minutes, the switch between non-REM and REM sleep occurs. Non-REM sleep is accompanied by large-amplitude, low-frequency activity in the EEG, with a spectral peak around ~0.5 – 4 Hz, whereas REM sleep shows regular EEG activity in the theta band (6 – 10 Hz), together with muscle atonia2. Within non-REM sleep, humans cycle through light (S2) and deep slow-wave sleep (SWS). As their naming indicates, these two stages show lower and higher arousal thresholds3,4, respectively, and they differ primarily in the density of low-frequency cortical EEG power, referred to as slow-wave activity (SWA; 0.75 – 4 Hz). Non-uniformity persists throughout individual bouts of S2 and SWS on the minute- to sub-second-timescale, as extensively documented by the variable presence of SWA over the course of a bout5,6, but also by EEG and field potential rhythms at higher frequencies, including spindle waves in the sigma band (10-15 Hz) and gamma rhythms (80 – 120 Hz) (for a review, see7,8,9,10).
Rather than being subtle, these variations do shift the sleeping cortical state in humans to the extremes of the spectrum. For non-REM sleep, these range from a predominance of SWA to states that approximate wake-like activity because they contain a substantial proportion of high-frequency components11,12. In rodents and cats, although non-REM sleep is not subdivided into stages, a brief period called intermediate sleep (IS) emerges prior to REM sleep onset13. During IS, REM sleep features such as hippocampal theta activity and ponto-geniculo-occipital waves initiate, while non-REM sleep signatures, such as spindle waves and SWA, are still present, indicating a mix between the two sleep states14,15. Nevertheless, IS could be functionally distinct because it is modulated by antidepressants16 and through novel object presentation during prior waking17, and it contributes to setting the arousal threshold18. Furthermore, state space plots of EEG and EMG parameters of freely moving rats show a cluster of points14 that is continuous between non-REM sleep, REM sleep, and wakefulness. There are also sporadic declines in SWA, without entering wakefulness or REM sleep, which leads to substantial fluctuations in the relative presence of the low- and high-frequency components during a consolidated non-REM sleep bout14,19,20. Finally, variable ratios of SWA and higher frequency rhythms during non-REM sleep occur not only in time, but also show regional differences in amplitude and synchronization between cortical areas19.
Mammalian non-REM sleep is far from uniform. However, whether such non-uniformity leads to states that differ in function and behavioral attributes is not clear. In several types of sleep disorders, continuous sleep is disrupted by spontaneous awakenings and inappropriate motor behavior. Moreover, spectral analyses show alterations in the relative presence of higher frequencies in the EEG21 and in autonomic parameters, such as rates of breathing and cardiac beating22. The orderly sequence of stable sleep states is thus perturbed, and elements of cortical and/or autonomic arousal intrude in an uncontrolled manner. Therefore, understanding the continuum of sleep states is of possible relevance for disease. Additionally, the perturbance of sleep by environmental noise in urban environments is associated with general health risks, rendering it crucial to identify moments of heightened vulnerability during sleep23.
Behavioral arousal experiments in sleeping humans indicate that it is hardest to wake up from SWA-dominated non-REM sleep (stage S3), whereas light non-REM sleep (stage S2) and REM sleep show comparable and lower arousal thresholds4. The cortical processing of short sound stimuli varies substantially between REM sleep, S2, and S324,25, indicating that state-specific cortical activity patterns modulate the first stages of sensory processing. For non-REM sleep in humans, the propensity to wake up in response to noise varies with the presence of spindle waves and alpha rhythms in the EEG26,27,28. Thalamocortical rhythmicity during spindles is accompanied by enhanced synaptic inhibition at both the thalamic and cortical levels, which is thought to contribute to the attenuation of sensory processing7.
How are noise-resistant and vulnerable periods of sleep organized in time, and what are their determinants? In both mice and human, we recently identified an infra-slow, 0.02-Hz oscillation in neural rhythms. Depending upon the phase of this 0.02-Hz oscillation, mice showed variable reactivity to external stimuli, either waking up or sleeping through the noise. Interestingly, this oscillation was correlated with the rate of the heartbeat, indicating that the autonomic nervous system participates in the modulation of sleep's vulnerability to external stimuli1. Memory-related hippocampal rhythms were also organized within this rhythm, and, most strikingly, its strength correlated with the quality of memory consolidation in humans. The 0.02-Hz oscillation thus appears to be an organizing principle of rodent and human non-REM sleep that modulates both sensitivity to the environment and internal memory processing. This again highlights the need for multiparametric and continuous assessments of sleep states to recognize their functionality and to identify sites of potential vulnerability.
Here, we present a procedure to extract the waveform of these dynamics, including the surgical implantation of mice for combined EEG/ECoG and EMG-ECG measurements, exposure to sensory stimuli, and analysis routines. This procedure provides a basis for viewing sleep as a continuously varying yet highly organized vigilance state during which different fundamental sleep functions are sequentially executed. More generally, the procedure is applicable to approaches aiming to extract the spectral and autonomic features that precede a behavioral outcome during sleep in both health and disease states.
All experimental procedures were performed in accordance with the University of Lausanne Animal Care Committee and the Service de la Consommation et des Affaires Vétérinaires of the Canton de Vaud.
1. Surgery for EEG/EMG-ECG Recordings
Figure 1. Schematic Display of the Sites for EEG and EMG Electrode Implantation on the Skull of the Mouse.
Craniotomies #1 and #2 are located ~2 mm lateral to the midline and ~2 mm rostral to bregma. Craniotomies #3 and #4 are located ~2 mm rostral to lambda and are, respectively, 4 and 2 mm lateral to the midline. The two EEG electrodes, made from soldering a gold wire to the top of a gold-plated steel screw (#2 and #4) are on the right hemisphere. The 2 left screws (#1 and #3) serve as supports. Note that EMG-ECG electrodes should not be in contact with these 2 supporting screws. EMG-ECG electrodes are 3 – 4 cm-long gold wires, bent at 90° angles over 1 cm on their rostral ends and coiled (1 – 2 mm ø) on the caudal ends. The 2 EEG and 2 EMG electrodes are connected to the 2 x 3-channel head connector by soldering one wire to one cornered pin, as shown by the dashed lines. Further detailed information on these electrodes and their implantation can be found in 29. Please click here to view a larger version of this figure.
2. Basic Scoring of EEG/EMG-ECG Data for Vigilance State Determination
3. Analysis of the Infra-slow Oscillation For EEG And Heartbeats
Figure 2. Determining Sigma Power Dynamics During Undisturbed Non-REM Sleep.
(A) Top, EEG (black) and EMG-ECG (gray) traces during the first 100 min of the light phase in one mouse. Vigilance states are indicated by the colored bar on top of the raw traces. Middle, typical example of a continuous (>96-s) non-REM sleep bout. Bottom, a randomly picked, 16-s interval that illustrates the subdivision into 4-s epochs. The following step of the analysis is shown for these four epochs only, but it is valid for every epoch contained in the bout. (B) Top, four successive FFTs generated from the 4-s epochs shown in the bottom panel of A. The sigma band (10-15 Hz) is shaded in red. Top right, 1-s inset from the last epoch showing the R-waves present in the squared EMG-ECG signal. Bottom, time course of the sigma power extracted from the corresponding spectrum above. The dotted lines illustrate the continuation of the power values prior to and after the four non-REM bouts selected for display. (C) Normalized sigma power (red) and heartbeat (in BPM) (gray) time courses, with the portion illustrated in (B) located between the vertical dashed lines. Below is the corresponding filtered EEG signal in the sigma band (10 – 15 Hz). (D) Result of the FFT computed on the sigma power time course shown in (C), demonstrating a dominant peak at 0.016 Hz. Please click here to view a larger version of this figure.
4. Exposure to Noise
5. Retrospective Analysis of Sleep Based on the Behavioral Outcome During Exposure to Noise
Figure 3. Behavioral Outcomes in Response to Noise Onset: Representative Results that Were Retained or Excluded from Analysis.
(A-D) Raw traces of the EEG (black) and corresponding EMG-ECG (gray) signals for 40 s before noise onset and during the 20 s of noise, represented by the blue-shaded area. Vigilance states are indicated in the color code. To illustrate data that were included in the analysis, representative "Sleep-through" (A) and "Wake-up" (B) events are shown. Results that were discarded contained transitions to REM sleep (C) and a precocious "Wake-up" response (D). The inset shows an expanded portion of EEG and EMG-ECG traces characteristic for REM sleep. (E) Typical examples of sigma power dynamics in the 40-s window before noise onset during a "Sleep-through" (left) and a "Wake-up" (right) event. The raw EEG trace bandpass-filtered for the sigma band is shown above. The blue area represents the noise onset. Please click here to view a larger version of this figure.
Figure 2A (top panel) shows 100-min stretches of spontaneous sleep-wake behavior, recorded through polysomnographic electrodes implanted as described (see Figure 1). The increases and decreases of the EEG and EMG amplitude at non-REM sleep onset are clearly visible. Intermittent REM sleep is marked by a decrease in EEG amplitude and a further decrease in EMG tone that is not visible on this compressed time scale. Zooming in on one non-REM sleep bout reveals the high-amplitude slow waves in the EEG and, in the EMG-ECG trace, the low muscle activity, onto which the RR intervals of the heart rate superimpose as vertical deflections (Figure 2A, middle and lower panels). An FFT reveals the dominance of SWA throughout all 4-s epochs (Figure 2B). Plotting the mean sigma power (10 – 15 Hz, red shadowed bar) for each of these epochs reveals its varying time course, along with variations in heart rate with the opposite direction. Carrying out this analysis over the entirety of the non-REM bouts and normalizing to mean power values unravels the regular variations in sigma power around the mean (Figure 2C). Fourier analysis over this power time course shows a major peak around 0.02 Hz, reflecting the periodic increase of sigma power in 50-s intervals (Figure 2D).
To probe the function of the 0.02-Hz oscillation in arousability, mice were exposed to 20-s pulses of 90 dB when sleeping, per the conditions described. Figure 3 displays some of the experimental outcomes of such noise exposures. When mice did not wake up during the noise, and EEG and EMG-ECG waveforms remained unaltered, the outcome was classified as a "Sleep-through" (Figure 3A). When the EEG amplitude decreased and EMG activity was observed, the outcome was scored as a "Wake-up" (Figure 3B). Occasionally, mice switched to REM sleep during a trial (Figure 3C) or woke up in the 40-s interval before noise onset (Figure 3D). These events were excluded from the analysis, because our interest was specifically to identify the hallmarks of consolidated non-REM sleep that precede the outcome of noise exposure ("Sleep-through" or "Wake-up"). Calculating the sigma power in the 40-s period prior to noise stimulation showed that the 0.02-Hz oscillation was at its trough when a "Sleep-through" occurred (Figure 3E, left panel), whereas it peaked for a "Wake-up" event (Figure 3E, right panel). Therefore, scoring the non-REM sleep of a mouse retrospectively, based on a variable behavioral outcome to acoustic stimulation, identifies the phase of the 0.02-Hz oscillation in sigma power as a hallmark for sleep states with variable resilience to noise.
Here, we show how to establish a continuous temporal profile of non-REM sleep that integrates EEG, EMG, and ECG variables. This is a first step towards developing an integrative description of mouse sleep, which can help to identify the previously unrecognized timescale over which high and low resilience to noise are organized during non-REM sleep1. A similar temporal structure was also described in human non-REM sleep through an analogous analysis1.
The procedure presented here fulfills two goals. First, we bring to attention that polysomnographic techniques can reliably provide both EEG and EMG-ECG signals during the entirety of the non-REM sleep periods in mice. The heartbeat is most evident in EMG traces during REM sleep due to muscle atonia, and it becomes more hidden in non-REM sleep because of increased muscle tone and occasional muscle twitches. Inserting EMG-ECG electrodes more deeply into the muscle and keeping them as distant as possible increases the amplitude of the R-waves of the heart, such that they emerge clearly from the background muscle tonus. Routines for peak detection then extract the heart rate from the non-REM sleep EMG-ECG signal and allow for the quantification of its variability.
Telemetry-based technologies to simultaneously monitor EEG/EMG and ECG are increasingly used, but the quality of the signals required for thorough spectral analysis remains inferior in terms of bandwidth and stability. Furthermore, even single-channel transmitters are of considerable size, and their implantation in the cervical subcutaneous region or in the body cavity may affect the animal's well-being and perturb sleep. Nevertheless, further developing such devices is necessary to expand the range of central and autonomic parameters that can be simultaneously followed during undisturbed sleep in mice, which is the animal model of choice for sleep studies. In combination with techniques such as head restraint, which allows for the collection of data from both non-REM and REM sleep in mice with unaltered spectral profiles1,19, multiparametric measurements during sleep can now be combined with controlled behavioral testing.
Second, the analytical approach we present here can also be applied to local field potentials to define the brain area involved in generating the hallmark of interest1. Moreover, it is applicable to imaging techniques fast enough to report on the spectral behavior of neuronal populations and for both continuous (e.g., spectral bands) and discrete (e.g. heart rate or respiration) variables. Its time resolution is only limited by the duration of the epoch chosen for scoring the vigilance state. Essentially, standard spectral analyses of the signals derived from non-REM sleep bouts are followed by an alignment of the power density values of individual signals for every epoch. Then, a spectral analysis of these power dynamics is used to quantify periodicities in the structure. In both mice and humans, our approach yielded a 0.02-Hz oscillation, with comparable properties1, which qualified it as a unifying hallmark for mammalian sleep structure.
A critical step was the functional validation of the observed periodicity by scoring non-REM sleep retrospectively based on the behavioral reactivity of the sleeping mouse to noise. Here, the choice of a noise stimulus that led to a variable behavioral outcome, causing wake-up or sleep-through, was decisive. Strong sensory stimuli that cause wake-up in most exposures would not unravel the 0.02-Hz oscillation, because wake-up would be enforced from all its phases. In contrast, a too-weak stimulus would not consistently reveal the phase relation to the 0.02-Hz oscillation. Similarly, any observed periodicity in a measured parameter set would need to go along with the variable outcome. For example, in the case presented here, we have only distinguished between wake-up or sleep-through events, not considering the exact moment of wake-up during the noise exposure or the duration of the ensuing wake state (however, see1). Using short stimuli at various intensities24,25,28 could help to delineate the exact phase relationships between the 0.02-Hz oscillation and wake-up. Furthermore, varying the frequency composition of the sounds could modulate arousability as a function of the recent history of sleep-wake behavior, the gender, the presence of nestlings, or other forms of recent experience. Another possibility could be to probe whether the prevalence of microarousals or full arousals depends upon a given momentary sleep state.
The scoring of sleep based on a variable behavioral outcome could illuminate the functional microarchitecture of sleep more generally. While we and others have tested reactivity to noise exposure1,28, wake-up in response to other sensory modalities, vigilance state transitions14, or dream reports could be assessed to extract the corresponding correlates of the preceding sleep. Furthermore, it will be very interesting to test sleep disorder patients with respect to their sensibility to external disturbance and to a potential disruption of the 0.02-Hz oscillation. Sleep disorders may lead to cardiovascular disturbance, whereas cardiovascular risk can lead to sleep dysregulation31,32, rendering investigations on the brain-heart coordination during 0.02-Hz oscillation potentially relevant for understanding this bidirectional dependence.
The authors have nothing to disclose.
We thank all lab members for their contribution to the writing and careful reading of this manuscript. We are grateful to Paul Franken for stimulating discussions, Dr. Gisèle Ferrand for helpful comments on the surgical protocol, and Dr. Jean-Yves Chatton for providing the original Labview executable files for the noise exposure. Funding was provided by the Swiss National Science Foundation (Grants 31003A_146244 and 31003A_166318) and the Etat de Vaud.
2-components epoxy glue | Henkel | Loctite EA 3450 | |
Absorbable Suturing Fiber (Prolene) | Ethicon | 5-0 FS-3 | |
Adson Forceps | FST | 11006-12 | |
Antiseptic swab | VWR | 149-0332 | |
Attane Isoflurane | Piramal | Isoflurane 250mL | |
Connectors 3×2-channels | ENA AG | 2.316 | Raster 2.00 x 2.00 mm; size 5x8x9 mm; pin size 5mm; http://www.ena.ch/ |
Dragonfly commutator | Dragonfly | Model #SL-10 | |
EMBLA amplifier | EMBLA | A10 amplifier | |
Fine scissors | FST | 14108-09 | |
Flat Head Gold-plated steel screw | J.I. Morris | FF00CE125 | https://jimorrisco.com/ |
Gold wire | CMSA | T.69 5gr | http://www.cmsa.ch/en/ |
Hemostatic sponge | Pfizer | Gelfoam | |
iodine-based disinfectant (Betadine) | Mundipharma | standart solution 60mL | |
Komet drill steel 1/005PM104 | UNOR AG | 22310 | |
Matlab Analysis Software | MathWorks | R2016b | https://ch.mathworks.com/products/matlab.html |
Microdrill | Fine Science Tools | 96758 | |
Mouse Gas Anesthesia Head Holder | Kopf Instruments | Model 923-B | http://kopfinstruments.com/product/model-923-b-mouse-gas-anesthesia-head-holder/ |
Ophtalmic ointment | Pharmamedica | VITA-POS | |
Paladur (liquid) | UNOR AG | 2260215 | for dental cement |
Palavit (powder) | UNOR AG | 5410929 | for dental cement |
Small Animal Stereotaxic Frame | Kopf Instruments | Model 930 | http://kopfinstruments.com/product/model-930-small-animal-stereotaxic-frame-assembly/ |
Soldering wire | Stannol | 593072 | |
Temperature controller – Mini rectal probe | Phymep | 4090502 | http://www.phymep.com/produit/dc-temperature-controller/ |
Temperature controller- heating pad | Phymep | 4090205 | http://www.phymep.com/produit/dc-temperature-controller/ |