We demonstrate the precise manipulation of individual organic molecules on a metal surface with the tip of a scanning probe microscope driven in 3D by the experimenter’s hand using a motion capture system and fully immersive virtual reality goggles.
Considering organic molecules as the functional building blocks of future nanoscale technology, the question of how to arrange and assemble such building blocks in a bottom-up approach is still open. The scanning probe microscope (SPM) could be a tool of choice; however, SPM-based manipulation was until recently limited to two dimensions (2D). Binding the SPM tip to a molecule at a well-defined position opens an opportunity of controlled manipulation in 3D space. Unfortunately, 3D manipulation is largely incompatible with the typical 2D-paradigm of viewing and generating SPM data on a computer. For intuitive and efficient manipulation we therefore couple a low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM) to a motion capture system and fully immersive virtual reality goggles. This setup permits "hand controlled manipulation" (HCM), in which the SPM tip is moved according to the motion of the experimenter's hand, while the tip trajectories as well as the response of the SPM junction are visualized in 3D. HCM paves the way to the development of complex manipulation protocols, potentially leading to a better fundamental understanding of nanoscale interactions acting between molecules on surfaces. Here we describe the setup and the steps needed to achieve successful hand-controlled molecular manipulation within the virtual reality environment.
The low-temperature non-contact atomic force/scanning tunneling microscope (LT NC-AFM/STM, in the following simply termed SPM) is the tool of choice for atomically precise manipulation of individual atoms or molecules1–3. SPM-based manipulation is typically limited to two dimensions and consists of a series of abrupt and often stochastic manipulation events (jumps). This essentially limits the control over the process. Contacting the molecule in question by a single chemical bond at a well-defined atomic position leads to an approach that can overcome these limitations4–9. Throughout its manipulation the contacted molecule is connected to the SPM tip so that moving the molecule in all three dimensions by appropriate displacements of the tip becomes possible. This creates the possibility for various complex manipulation procedures performed in 3D space. However the contacting manipulation may be hindered by interactions of the manipulated molecule with the surface or/and other molecules in its surroundings, which may create forces that are large enough to rupture the tip-molecule contact. Therefore a particular 3D trajectory of the SPM tip may or may not result in a successful manipulation event. A question thus arises how to define protocols that lead to successful completion of manipulation in the circumstances when the tip-molecule bond has a limited strength, while the interactions of the manipulated molecule with its environment are not a-priori well characterized.
Here this question is approached in the most intuitive manner imaginable. The experimenter is allowed to control the displacements of the SPM tip simply by moving their hand7. This is achieved by coupling the SPM to a commercial motion capture system, some of the specifications of which are provided below. The advantage of "hand controlled manipulation" (HCM) is in the experimenter's ability to try out different manipulation trajectories quickly and learn from their failure or success.
The HCM setup has been used to conduct a proof-of-principle experiment in which a word ("JÜLICH") was stenciled in a closed layer of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) molecules on Ag(111), removing 48 molecules, one by one, with HCM7. Lifting a molecule from the surface cleaves its intermolecular hydrogen bonds which bind the molecules in the monolayer10. Typically the total strength of the present intermolecular bonds exceeds the strength of the single chemical bond between the outermost atom of the tip and a carboxylic oxygen atom of PTCDA by which the molecule is contacted (see Figure 1). That may lead to the rupture of the tip-molecule contact and the following failure of the manipulation attempt. The experimenter's task is thus to determine a tip trajectory that breaks the resisting intermolecular bonds sequentially rather than simultaneously, so that the total force applied to the tip-molecule contact never exceeds its strength.
Although the desired trajectory may in principle be simulated, due to the size and complexity of the system involved the necessary simulations would take a prohibitively large amount of time. In contrast to that, using HCM it was possible to remove the first molecule after 40 minutes. Towards the end of the experiment the extraction took already much less time which confirms the effectiveness of the learning procedure. Additionally, the accuracy and versatility of the HCM method was evidenced in the act of reverse manipulation when a molecule extracted from the neighboring location was used to close the void left after the erroneous removal of another molecule from the monolayer.
Motion capture approach, while being fast and intuitive, is limited to the generation of tip-trajectory data. For further systematic development of new molecular manipulation protocols it is equally important to be able to view the tip trajectory data in real time as well as to analyze previously generated data. Therefore, the functionality of the HCM setup is enhanced substantially by adding virtual reality goggles which allow the experimentalist to see the data plotted in the 3D virtual scene where the tip trajectory is augmented by the current (I) and frequency shift (Δf) values measured by the SPM in real-time8 (see below). In addition to that, the virtual reality scene shows a model of the manipulated molecule that serves as a visual scale reference. Thus the HCM setup complimented by the virtual reality interface is suitable for systematic mapping of the manipulation trajectory space and successive refinement of the promising manipulation protocols. Besides that the system also facilitates the knowledge transfer between different experiments. The following paragraphs give a description of the setup and some of its specifications that are relevant for manipulation experiments.
The experiments are performed in ultra-high vacuum (UHV) at a base pressure of 1 x 10-10 mbar with a commercial SPM consisting of a preparation chamber and an analysis chamber. The preparation chamber is equipped with: Ar+ source used for sample sputtering, sample transfer via manipulator (allows heating and cooling of a sample), low-energy electron diffraction (LEED), a customized Knudsen cell (K-cell) containing PTCDA powder purified by sublimation. The analysis chamber is equipped with: LN2 bath cryostat with a volume of 12 L and a holding time of 46 hr, LHe bath cryostat (5 L, 72 hr), Besocke11 beetle-type SPM equipped with a tuning fork sensor12 (TFS) consisting of a quartz tuning fork with an electrically connected PtIr tip (for STM operation), which is cut and sharpened by a focused ion beam (FIB) (Figure 2).
Figure 2. Tuning fork sensor. (a) Image of a commercial tuning fork sensor with attached PtIr tip. (b) SEM image of the PtIr tip apex cut with FIB. Please click here to view a larger version of this figure.
The AFM is operated in the frequency-modulated (FM) mode13 where the TFS is excited at the resonance (f0 ≈ 31,080 Hz) with a dither piezo. The piezoelectric signal of the oscillating tuning fork is amplified and used by a phase locked loop (PLL), which keeps the amplitude of the TFS's oscillation constant and tracks changes of its resonance frequency, Δf = f – f0, that originates from the gradient of the force acting on the tip. As shown in Figure 3 the SPM tip position is controlled by voltages (ux, uy, uz) applied to a set of x-, y-, z-piezos (piezo constants at 5 K: x=15, y=16, z=6 Å/V). The ux, uy, uz-voltages (±10 V at 20 bit resolution) are generated at the SPM electronics outputs. They are further amplified by a high voltage (HV) amplifier that has a maximum output voltage of ±200 V.
Figure 3. Schematics of the HCM setup. The position of (tracked object) TO that has multiple (infrared) IR sources installed on its surface is tracked by two infrared cameras of the motion capture system (MCS). TipControl software obtains the TO coordinates (x,y,z) from MCS and passes it to the remote voltage source (RVS) which generates a set of voltages (vx,vy,vz) that are summed with the voltages (ux,uy,uz) produced by the SPM electronics for control of the SPM tip position. The added voltage passes through a high-voltage (HV) amplifier and is further applied to the piezo-positioning system of the SPM tip. The setup allows manual control of the tip positioning when the SPM feedback (FB) loop is open. The (x,y,z) position of the tip as well as I(x,y,z) and Δf(x,y,z) are passed to the VRinterface software that plots it in the 3D virtual scene seen by the operator wearing the head-mounted display (HMD). Please click here to view a larger version of this figure.
The tunneling current that flows between the SPM tip and the surface is measured by a transimpedance amplifier with a variable gain that ranges from 1 x 103 to 1 x 109 V/A (bandwidth at gain 1 x 109 V/A is 1 kHz). The output of the amplifier is fed into the STM feedback (FB) loop to regulate the tip height above the surface in constant current scanning mode. The stability of the junction (with the TFS oscillation turned off) is 1-3 pm. The piezoelectric oscillation signal of the TFS is amplified in two stages: (1) preamplifier fixed to the LN2 shield (gain 1 x 108 V/A, bandwidth 20 kHz), and (2) external voltage amplifier with variable gain from 1 x 101 to 5 x 104 and a bandwidth of 1 MHz.
For HCM experiments, the SPM setup is extended with: motion capture system (MCS), remotely controllable multichannel voltage source (RVS), summing amplifier and virtual reality head mounted display (HMD). All of the listed devices except the summing amplifier were acquired commercially.
MSC is an infrared (IR) marker-tracking system that allows millimeter resolution of spatial displacements at a rate of 100 Hz. The system consists of two IR cameras, a trackable object (TO) and the control software. The MCS software obtains the x-, y-, z-coordinates of the TO in 3D space by analyzing its images obtained by the two cameras. MCS provides a programming library that allows use of the coordinates of TO in a separate software program.
The coordinates of TO (xTO, yTO, zTO) are passed to a custom-developed software program "TipControl". Figure 4 shows a screenshot of the graphical user interface. The software is activated by the "start" button in the window. After activation (τ=0) the software sets all vx-, vy-, vz-voltages on RVS (voltage range ±10 V at 16 bit resolution, 50 msec latency per voltage step) according to the following expression etc., where cx, cy, cz are the factors that convert 5 cm of the displacement of TO into 1 Å displacement of the SPM tip. The factors px(t), py(t), pz(t) have values defined by the status of the x-, y-, z-checkboxes in the software window. If the box is checked then the corresponding p(t) is set to 1. All p(t) are set to 0 at the moment when the "pause" button is pressed in the software window. That allows the operator to temporarily "freeze" the position of the tip. Pressing the "reset all" button in the software window sets vx-, vy-, vz-voltages to zero which returns the tip to its initial position defined by the SPM software. The text field "manual command to RVS" in the software window can be used to set any of the vx-, vy-, vz-voltages to any value in the allowed range of ±10 V. The vx-, vy-, vz-voltages generated by RVS are added to the ux-, uy-, uz-output voltage signals of SPM electronics via a summing amplifier (gain 1, bandwidth 50 kHz, output range ±10 V).
Figure 4. Screenshot of the interface window. Two indicators exhibit the status of connection with MCS and RVS systems. Checkboxes are used to activate hand-control along selected spatial axes. The button “Start” initiates data flow between MCS, TipControl and RVS according to the scheme shown in Figure 3. Button “Pause” stops the data flow. Button “Reset All” sets all RVS voltages to zero. Please click here to view a larger version of this figure.
For visualization of the experimental data (tip trajectory, I, Δf) a head mounted display (HMD) is used. The HMD provides a stereoscopic view (split HD display — one half for each eye, 1,920 x 1,080 pixels at 75 Hz). A dedicated IR camera tracks the position and orientation of HMD in 3D space using IR-LEDs fixed on the surface of HMD. The HMD tracking system allows the operator to change the view inside the 3D virtual reality scene by a turn of their head or simply moving their body.
The custom-written software "VRinterface" collects the data both from SPM and MCS, renders it in the 3D scene using OpenGL and displays it in the HMD with the help of the HMDs software development kit (SDK). VRinterface retrieves the actual x-, y-, z-coordinates of the tip directly from the tip software (few millisecond latency) while I and Δf signals are read directly from the outputs of the SPM electronics (latency ≈ 250 msec). Figure 5 shows a screenshot of the 3D virtual scene as seen by the operator wearing HMD during HCM. Inside the 3D virtual scene the tip apex is rendered as a white sphere. The coloring of the recorded tip trajectories reflects values of either log(I(x,y,z)) or Δf(x,y,z). Switching between log(I(x,y,z)) or Δf(x,y,z) color modes is done by the press of a button. Another button initiates the recording (and displaying) of experimental tip trajectory data. When pressed again the button stops the recording. The virtual scene also shows a static PTCDA molecule which is used as a visual aid during manipulation. The operator aligns its orientation manually to fit the orientation of the real molecule on the surface by using buttons on a keyboard.
Caution: Because the head tracking of HMD relies on IR-LEDs, it may interfere with the MCS since it also uses IR light to track the position of TO. Therefore TO has to have a unique shape recognized by the MCS. This helps MCS to discriminate between the signals that come from TO and those coming from IR-LEDs of HMD.
Figure 5. Screenshot of the 3D virtual scene displayed to the operator in HMD during HCM. A set of white spheres forms a model Ag(111) surface. Orientation of the model surface may not necessarily coincide with the orientation of the sample. A model of the PTCDA molecule is placed above the model surface. C, O, H atoms of PTCDA are shown in black, red and white respectively. For the purpose of convenience azimuthal orientation of the model molecule can be adjusted to fit the orientation of the real molecule chosen for manipulation. The tip position is marked by a single white sphere representing the outermost tip apex atom. The real-time I(x,y,z) and Δf(x,y,z) data are displayed as bar indicators placed next to the tip. Previously recorded as well as the currently executed manipulations are displayed as 3D trajectories whose color represents either log(I(x,y,z)) or Δf(x,y,z) values measured at corresponding positions of the trajectory. The figure shows trajectories that are colored with log(I(x,y,z)) signal. The color contrast can be switched between log(I(x,y,z)) and Δf(x,y,z) modes by press of a button. Please click here to view a larger version of this figure.
Caution: PTCDA can be irritating to the skin or eyes and should therefore be handled with care using appropriate gloves. Please consult appropriate safety brochures. Cryogenic liquids can produce effects on the skin similar to a thermal burn or can cause frostbite on prolonged exposure. Always wear safety glasses and appropriate cryogenic gloves when handling cryogenic liquids. The gas formed by cryogenic liquids is very cold and usually heavier than air and can accumulate near the floor displacing air. When there is not enough air or oxygen, asphyxiation and death can occur. Please consult appropriate safety brochures.
1. Sample Preparation
2. Setup AFM Operation with TFS
3. Integration of MCS in the SPM Setup
4. Integration of the HMD in the SPM Setup
5. Prepare SPM for the Manipulation of Single PTCDA Molecules
6. Preparation for Hand Controlled Manipulation (HCM)
7. Use HCM for Controlled Manipulation of PTCDA
Note: This part shows work published in7,8.
Applying HCM to the problem of lifting PTCDA/Ag(111) out of a layer, we were able to write a pattern by sequentially removing individual molecules (Figure 9). In total 48 molecules were removed, 40 of which could be redeposited to the clean Ag(111), showing that the molecules stay intact during the manipulation process. This allows using HCM to correct "writing errors" by taking a molecule from a different location and filling an accidentally created vacancy (insets of Figure 9)7.
Successful trajectories that allowed to remove a molecule from the layer are displayed in Figure 10. They bunch in a relative narrow solid angle, the direction of which suggests that the molecule can be removed from within the layer in a "peeling" motion. This peeling facilitates a gradual cleaving of the intermolecular H-bonds and keeps the total forces acting on the tip-molecule bond under a critical threshold7.
The VR feedback allows to execute several reproducible manipulations, each time following the same previously recorded trajectory. Reproducibility is indicated by strong similarities in the I(x,y,z) and Δf(x,y,z) data in Figure 11. Because the shape of the trajectory depends also on the exact shape of the tip apex we perform an experiment in which one and the same molecule is manipulated along similar trajectories maintaining the same tip apex structure. An unchanged tip shape is verified by the reproducibility of the contact point between lifting attempts. The molecule is not completely pulled out of the layer but each time returned to its vacancy after the recording is stopped (as long as the bond did not break by itself), to lower the probability of triggering a modification of the apex as a consequence of high forces during complete removal. Figure 11 shows the 3D trajectories of such an experiment, where the molecule was repeatedly pulled along two trajectories8.
Figure 1. Illustration of the manipulation process. (a) Extraction of a single PTCDA molecule from an island by contacting manipulation (four tip apex atoms are shown). (b) Example I(z) and Δf(z) curves recorded during the extraction of a molecule by HCM. Please click here to view a larger version of this figure.
Figure 6. STM image of a compact PTCDA island on Ag(111). The image size is 600 x 600 Å2 and the tunneling conditions are I = 0.1 nA and Vb = -0.35 V. A void seen in the film is the result of extraction of three molecules. Extracted molecules were re-deposited back onto the surface (bottom left corner of the image). The inset shows a 50 x 30 Å2 STM image that reveals the typical contrast of PTCDA that stems from its lowest unoccupied molecular orbital (LUMO). The reactive carboxylic oxygen atoms of PTCDA that are used for contacting the molecule are marked by two red crosses. The molecular orientation can be derived according to Ref. 17. Please click here to view a larger version of this figure.
Figure 7. Frequency response spectrum. Shown is the frequency response of the tuning fork sensor (TFS) measured in UHV and at 5 K. Corresponding Q-factor value is about 70,000. Please click here to view a larger version of this figure.
Figure 8. I(z) curves recorded during the test of the tip-molecule contact. The contact is established by approaching the tip towards one of the carboxylic oxygen atoms of PTCDA. The approach distance Δz from the stabilization point I = 0.1 nA, Vb = -0.35 Vis about 4 Å. Both, approach (black) and retraction (red) curves were recorded with the bias Vb = -5 mV. Sharp jump observed at z= 0 Å in the approach curve occurs due to the oxygen atom of PTCDA snapping to the tip and forming the tip-molecule contact. After the contact was formed the tip was retracted vertically back to its initial position. As the tip was retracted its contact to the molecule ruptured at z = 0.3 Å. Please click here to view a larger version of this figure.
Figure 9. Example for the nano-structuring of a molecular layer by HCM. The STM image (stabilization point: I = 0.1 A, Vb = -0.35 V) shows 47 vacancies created by consecutive removal of individual PTCDA molecules by HCM without using the 3D virtual reality visual feedback. The insets show a sequence of manipulations made to correct a "writing error", filling a vacancy by a molecule removed from the island edge. (Adapted from Ref. 7) Please click here to view a larger version of this figure.
Figure 10. A perspective view showing 34 manipulation trajectories that all led to the successful removal of PTCDA from the monolayer. All of the trajectories were recorded while creating the pattern shown in Figure 9. The inset shows a projection of a 7 Å radius sphere around the contacting point and indicates where successful (red) and unsuccessful (black) trajectories penetrate that sphere. All successful trajectories concentrate in a relatively narrow solid angle Ω (adapted from Ref. 7). Please click here to view a larger version of this figure.
Figure 11. Manipulation trajectory refinement and reproducibility. Projection of 3D tip trajectories recorded using HCM with 3D virtual reality visual feedback on a molecule within a PTCDA/Ag(111) island. The inset in (a) shows three manipulation attempts performed by the experimenter in search of the (successful) kinked trajectory shown in (a) and (b). The grey curve is the trajectory obtained from averaging the trajectories shown in Figure 10. Top and side views of seven manipulation attempts following the averaged trajectory (no success) and seven attempts along a newly found kinked trajectory (all successful). The color coding shows (a) log(I(x,y,z)) and (b) Δf(x,y,z). (Adapted from Ref. 8) Please click here to view a larger version of this figure.
Like other SPM-based methods, the molecular manipulation experiments described in this paper also depend to some extent on the properties of the SPM tip. The tip apex structure (which cannot be fully controlled) determines the strength of the tip-molecule bond. Hence the strength of the tip-molecule contact may vary considerably and thus sometimes may be too low. Hence within the protocol we refer to some basic tests of tip quality and tip treatment procedures. However, a more severe tip treatment might be required in some cases to achieve satisfactory manipulation results.
Another critical aspect of contacting manipulation with a NC-AFM/STM is the oscillation of the qPlus sensor during manipulation. With increasing amplitude the controlled manipulation becomes more difficult since the tuning fork moves the tip vertically up and down by a total of 2A0. In the limit of large amplitudes the tip is always retracted from the surface along a vertical trajectory which crucially affects the manipulation. Therefore, if the noise characteristics of the used NC-AFM/STM does not permit working with amplitudes well below 1 Å one should consider trying manipulation in STM mode, i.e., without exciting the tuning fork. While no information about the junction stiffness can be obtained in this case, the conductivity alone might be sufficient to monitor manipulation.
The use of HMD for the visualization of tip trajectory data has advantages but also limitations. A clear advantage is the gain in precision and intuition (in real time!) if one works in a true 3D virtual scene environment. In that respect we find the virtual reality approach to be much more effective than "offline" inspection of the trajectory data on a standard display. On the other hand wearing HMD complicates the operation with lab-equipment so that the important measurement data has to be projected into the VR (see Figure 6) to be viewed on-line. This limitation may in future be overcome with the augmented virtual reality interfaces in which the 3D virtual reality scene is directly superimposed over the real image of the laboratory environment.
Although there exist other approaches which couple a virtual reality environment and MCS to control an AFM those setups are specified for micro- and sub-micrometer scale manipulation under ambient conditions18. With respect to the manipulation of individual molecules with atomic precision our combination of MCS, HMD, and LT-SPM is unique. Hand-controlled manipulation gives a unique intuitive access to the problem of molecular manipulation. With the level of control offered, one can perform spectroscopic studies of single molecules in different configurations, understanding more about the fundamental physics in such metal-molecule-metal junctions. Using the method described in this paper will allow one to "learn" the complex potential energy surfaces which determine the probability for success of a specific manipulation attempt. Having acquired sufficient intuition one could delegate that learning to a computer, finally automating the manipulation process. Another consequential future development of the method is its combination with an atomistic real-time simulation of the manipulation process which would allow an even more direct feedback for the experimenter.
The authors have nothing to disclose.
The authors have no acknowledgements.
LN2 | caution: cryogenic liquid | ||
LHe | caution: cryogenic liquid | ||
PTCDA | caution: irritating substance | ||
Knudsen cell (K-cell) | custom | ||
ErLEED | Specs | used with power supply ErLEED 1000A | |
combient LT NC-AFM/STM | Createc | ||
qPlus sensor | Createc | TFS | |
preamplifier | Createc | amplifier for tuning forc signal fixed to LN2 shield (stage 1) | |
Low-Noise Voltage Preamplifier | Standford Research System | SR560 | external amplifier for tuning forc signal (stage 2) |
Variable Gain Low Noise Current Amplifier | Femto | DLPCA-200 | amplifier for tunneling current |
Bonita | Vicon | B10, SN: MXBN-0B10-3658 | MCS IR camera |
Apex Interaction Device | Vicon | SN: AP0062 | MCS trackable object (TO) |
MX Calibration Wand | Vicon | MCS calibration object | |
Tracker | Vicon | MCS software | |
BS series voltage supply | stahl-electronics | BS 1-4 | RVS |
summing amplifier | custom, gain 1, based on operational amplifier TL072 | ||
Oculus Rrift Development Kit 2 | Oculus VR | HMD | |
TipControl | custom-written software | ||
VRinterface | custom-written software |