This paper reports the nanomaterial fabrication of a fullerene Si substrate inspected and verified by nanomeasurements and molecular dynamic simulation.
This paper reports an array-designed C84-embedded Si substrate fabricated using a controlled self-assembly method in an ultra-high vacuum chamber. The characteristics of the C84-embedded Si surface, such as atomic resolution topography, local electronic density of states, band gap energy, field emission properties, nanomechanical stiffness, and surface magnetism, were examined using a variety of surface analysis techniques under ultra, high vacuum (UHV) conditions as well as in an atmospheric system. Experimental results demonstrate the high uniformity of the C84-embedded Si surface fabricated using a controlled self-assembly nanotechnology mechanism, represents an important development in the application of field emission display (FED), optoelectronic device fabrication, MEMS cutting tools, and in efforts to find a suitable replacement for carbide semiconductors. Molecular dynamics (MD) method with semi-empirical potential can be used to study the nanoindentation of C84-embedded Si substrate. A detailed description for performing MD simulation is presented here. Details for a comprehensive study on mechanical analysis of MD simulation such as indentation force, Young's modulus, surface stiffness, atomic stress, and atomic strain are included. The atomic stress and von-Mises strain distributions of the indentation model can be calculated to monitor deformation mechanism with time evaluation in atomistic level.
Fullerene molecules and the composite materials they comprise are distinctive among nanomaterials due to their excellent structural characteristics, electronic conductivity, mechanical strength, and chemical properties1-4. These materials have proven highly beneficial in a range of fields, such as electronics, computers, fuel cell technology, solar cells, and field emission technology5,6.
Among these materials, silicon carbide (SiC) nanoparticle composites have received particular attention thanks to their wide band gap, high thermal conductivity and stability, high electrical breakdown ability, and chemical inertness. These benefits are particularly obvious in optoelectronic devices, metal-oxide-semiconductor field-effect transistors (MOSFET), light-emitting diodes (LEDs), and high-power, high-frequency, and high-temperature applications. However, high density defects commonly observed on the surface of conventional silicon carbide can have detrimental effects on the electronic structure, even leading to device failure7,8. Despite the fact that the application of SiC has been studied since 1960, this particular unresolved problem remains.
The aim of this study was the fabrication of a C84-embedded Si substrate heterojunction and subsequent analysis to obtain a comprehensive understanding of the electronic, optoelectronic, mechanical, magnetic, and field emission properties of the resulting materials. We also addressed the issue of using numerical simulation to predict the characteristics of nanomaterials, through the novel application of molecular dynamics calculations.
NOTE: The paper outlines the methods used in the formation of a self-assembled fullerene array on the surface of a semiconducting substrate. Specifically, we present a novel method for the preparation of a fullerene-embedded silicon substrate for use as a field emitter or substrate in microelectromechanical systems (MEMS), and optoelectronic devices in high-temperature, high-power, applications as well as in high-frequency devices9-13.
1. Fabrication of Hexagonal-closed-packaged (HCP) Overlayer of C84 on Si Substrate
2. Measurements of Electronic Properties of C84-embedded Si Substrate
3. Measurements of Surface Magnetism
4. Measurement of Nanomechanical Properties by AFM
NOTE: Atomic force microscopy (AFM) provides a powerful tool for the characterization of material and mechanical properties at the micro- and nano-scales in air as well as in a UHV environment
5. Measurement of Nanomechanical Properties by MD Simulation
NOTE: In the simulation section, OVITO16 (open-source visualization software) and, oSSD17 (Open surface structure database) are used to create the simulation model and results visualization. LAMMPS14 (an open-source molecular dynamics (MD) simulation package) is employed to perform the nanoindentation simulation and analyze the simulation results15. All the simulation jobs are performed with parallel computing in the Advanced Large-scale Parallel Supercluster (ALPS) of NCHC.
NOTE: To study the C84 monolayer/Si substrate heterojunction by using MD simulation, one should prepare a simulation model by several steps to obtain a relaxed C84 monolayer embedded into the Si substrate. Note that it is difficult to generate an exactly the same structure from the experimental data, because of the complex of the inter structure between C84 monolayer and Si (111) substrate heterojunction. As a result, we use an artificial way to generate the simulation model with several steps of procedure, which is illustrated in Figure 5. The details are described in the following protocols. We describe how to setup the parameter of MD in LAMMPS, establish a relaxed C84 fullerene monolayer embedded into a substrate, perform an indentation procedure, and analyze the simulation results.
A monolayer of C84 molecules on a disordered Si(111) surface was fabricated using a controlled self-assembly process in a UHV chamber. Figure 1 shows a series of topographic images measured by UHV-STM with various degrees of coverage: (a) 0.01 ML, (b) 0.2 ML, (c) 0.7 ML, and (d) 0.9 ML. The electronic and optical properties of the C84 embedded Si substrate were also investigated using a variety of surface analysis techniques, such as STM and PL (Figure 2). The excellent material properties of the resulting samples demonstrate how nanotechnology can be used for the control of matter at the atomic- and nano-scales. The MFM and SQUID results in Figure 3 show the surface magnetism of C84 embedded substrate. Figure 4 presents the UHV-AFM results that refer to the nanomechanics of proposed substrate. Our experimental results demonstrate the potential of the C84 embedded silicon substrate as an alternative to semiconductor carbide in nanoelectronic devices for high-temperature, high-power, high-frequency applications as well as in magnetic and MEMS devices (in Figure 4).
In the simulation section, all the procedures are completed by using LAMMPS to perform the MD simulations. The mechanical properties (indentation force and contact stress) of the fullerene embedded substrate is calculated and shown in Figure 6. The von-Mises strain analysis of atoms at different time step are used to characterize the local deformation. The corresponding snapshots as a function of indentation depth can be seen in the inserts of Figure 6, which were calculated and visualized by OVITO. The results of indentation force as a function of indentation depth are used to calculate the hardness H (Figure 7a), reduced modulus Er (Figure 7b), and loading stiffness S (Figure 8) of the C84 monolayer. The results can be compare with that determined by experiment and provides a more detail point of view to interpret the variation of the mechanical property.
Figure 1: C84 Embedded Si substrate with different coverage. Series of STM topographic images (40 x 40 nm2) showing C84 molecules adsorbed on Si(111) surface at a negative sample bias of 2 V, as measured by UHV-STM with various degrees of coverage: (a) 0.01 ML, (b) 0.2 ML, (c) 0.7 ML, and (d) 0.9 ML.
Figure 2: Electronic properties measurements on C84 Embedded Si substrate. (a) I-V curves and differential derivative conductance (dI/dV) vs the voltage curve of a single self-assembled layer of C84, as determined by UHV-STM; (b) Field emission current density vs electric field curve; (c) Corresponding F-N plot of surface with embedded C84, as measured using a source-measure unit; (d) Photoluminescence spectrum of single self-assembled layer of C84. Re-print with permission from reference12. Please click here to view a larger version of this figure.
Figure 3: Surface magnetism on C84 Embedded Si substrate. (a) MFM image of Si Substrate embedded with C84; (b) Magnetization loop plotted against external magnetic field Please click here to view a larger version of this figure.
Figure 4: Nanomechanical investigation on C84 Embedded Si substrate. Force-distance analysis of disordered Si surface, 7 x 7 surface, single self-assembled layer of C84 embedded within Si surface, and Si surface, as determined using UHV-AFM. Re-print with permission from reference11. Please click here to view a larger version of this figure.
Figure 5: Flow chart for establishing simulation model. The dramatic illustrate the setting in MD simulation from a single layer C84 and Si(111) 7 x 7 surface to a C84 monolayer embed into Si(111) 7 x 7 model. The detail procedures can be seen in the section 5 of protocol. Please click here to view a larger version of this figure.
Figure 6: Indentation force and Contact stress analysis. Indentation force (black) and Contact stress (blue) of C84 as a function of indentation depth. Inserts show the corresponding snapshots, where the different color indicates the corresponding von Mises strain (εvM) of all atoms. To clear display the strain localization, only the atoms with εvM > 0.08 are shown in the snapshot. Please click here to view a larger version of this figure.
Figure 7: Hardness and reduced modulus analysis. (a) Hardness and (b) reduced modulus variation as a function of indentation depth for the C84 monolayer on Si surface. Please click here to view a larger version of this figure.
Figure 8: Loading stiffness analysis. Loading stiffness as a function of distance determined by MD simulations compared with that by AFM experiments for C84/Si. Modified from reference16. Please click here to view a larger version of this figure.
In this study, we demonstrate the fabrication of a self-assembled monolayer of C84 on a Si substrate through a novel annealing process (Figure 1). This process can also be used to prepare other kinds of nanoparticle-embedded semiconductor substrates. The C84-embedded Si substrate was characterized at the atomic scale using UHV-STM (Figure 2), field emission spectrometer, photo-luminescence spectroscopy, MFM and SQUID (Figure 3).
The adhesion strength corresponding to nanomechanical properties (i.e., stress) of the C84-embedded Si substrates can be measured using AFM (Figure 4). Our results demonstrate that the hardness of the proposed C84-embedded Si substrate is comparable to that of SiC and Si surfaces, making it applicable as an abrasive material for cutting tools as well as a film in MEMS devices.
In the simulation section, the von Mises strain (εvM) analysis is capable to detect the local deformation of atomic structure, which is very difficult to be observed in experiment. However, it is not possible to characterize the phase transformation. Here, we suggest some useful indices such as coordination number and HA index23 to examine the phase transformation. In the setting of the indentation model, we have to point out that the size of the substrate in plan direction must be at least three times larger than diameter of the probe for eliminating the size effect and the boundary condition limitation, which would affect the dynamics and force flow of atoms.
In addition, due to the time limit of MD simulation, to study the indentation process, the probe should exert the specimen with a very fast speed compared to that in experiment. We note that such a loading speed is too high to come out the long-time atomic diffusion and migration behavior, but it is still suitable to observe and describe the plastic deformation behavior and material properties under mechanical loading24 because the results can be recognized as approximately quasi-static in nature25. An alternative theory, named Parallel Replica dynamics (PRD)26, has been developed to substantially accelerate the simulation time, but it requires heavy computing resources.
The data obtained from the MD simulation study is in agreement with the AFM indentation experiment (Figure 8); additionally, the hardness and reduced modulus of the C84-embedded Si substrate are comparable to other Si substrates. These data suggest that C84-embedded Si substrates can have significant impacts in optoelectronic and dilute magnetic semiconductor (DMS) nanodevices.
The authors have nothing to disclose.
The authors would like to thank the Ministry of Science and Technology of Taiwan, for their financial support of this research under Contract Nos. MOST-102-2923-E-492- 001-MY3 (W. J. Lee) and NSC-102- 2112-M-005-003-MY3 (M. S. Ho). Support from the High-performance Computing of Taiwan in providing huge computing resources to facilitate this research is also gratefully acknowledged.
Silicon wafer | Si(111) Type/Dopant: P/Boron Resistivity: 0.05-0.1 Ohm.cm | ||
Carbon,C84 | Legend Star | C84 powder, 98% | |
Hydrochloric acid | Sigma-Aldrich | 84422 | RCA,37% |
Ammonium | Choneye Pure Chemical | RCA,25% | |
Hydrogen peroxide | Choneye Pure Chemical | RCA,35% | |
Nitrogen | Ni Ni Air | high-pressure bottle,95% | |
Tungsten | Nilaco | 461327 | wire, diameter 0.3 mm, tip |
Sodium hydroxide | UCW | 85765 | etching Tungsten wire for tip, |
Acetone | Marcon Fine Chemicals | 99920 | suitable for liquid chromatography and UV-spectrophotometry |
Methanol | Marcon Fine Chemicals | 64837 | suitable for liquid chromatography and UV-spectrophotometry |
UHV-SPM | JEOL Ltd | JSPM-4500A | Ultrahigh Vacuum Scanning Tunneling Microscope and Ultrahigh Vacuum Atomic Force Microscope |
Power supply | Keithley | 237 | High-Voltage Source-Measure Unit |
SQUID | Quantum desigh | MPMS-7 | Magnetic field strength: ± 7.0 Tesla, Temperature range: 2 ~ 400 K, Magnetic-dipole range:5 × 10^-7 ~ 300 emu |
ALPS | National Center for High-performance Computing, Taiwan | Advanced Large-scale Parallel Supercluster, 177Tflops; 25,600 CPU cores; 73,728 GB RAM; 1074 TB storage |