Several children with unilateral Cerebral Palsy seem to disregard the preserved capacity of their affected upper limb. This Developmental Disregard is extensively described in the literature but the involved cognitive processes have not been studied. To study underlying cognitive factors of upper limb control, an event-related potential protocol was developed.
Unilateral Cerebral Palsy (CP) is a neurodevelopmental disorder that is a very common cause of disability in childhood. It is characterized by unilateral motor impairments that are frequently dominated in the upper limb. In addition to a reduced movement capacity of the affected upper limb, several children with unilateral CP show a reduced awareness of the remaining movement capacity of that limb. This phenomenon of disregarding the preserved capacity of the affected upper limb is regularly referred to as Developmental Disregard (DD). Different theories have been postulated to explain DD, each suggesting slightly different guidelines for therapy. Still, cognitive processes that might additionally contribute to DD in children with unilateral CP have never been directly studied. The current protocol was developed to study cognitive aspects involved in upper limb control in children with unilateral CP with and without DD. This was done by recording event-related potentials (ERPs) extracted from the ongoing EEG during target-response tasks asking for a hand-movement response. ERPs consist of several components, each of them associated with a well-defined cognitive process (e.g., the N1 with early attention processes, the N2 with cognitive control and the P3 with cognitive load and mental effort). Due to its excellent temporal resolution, the ERP technique enables to study several covert cognitive processes preceding overt motor responses and thus allows insight into the cognitive processes that might contribute to the phenomenon of DD. Using this protocol adds a new level of explanation to existing behavioral studies and opens new avenues to the broader implementation of research on cognitive aspects of developmental movement restrictions in children.
Cerebral Palsy (CP) is defined as a group of neurodevelopmental disorders related to movement and posture impairments that are caused by disturbances to the developing foetal or infant brain1. Even though these impairments are non-progressive, they are associated with lifelong disabilities1,2. One of the most common subtypes of CP is unilateral CP, accounting for more than one third of all cases3. It is characterized by pronounced motor deficits on one side of the body that are frequently more prominent in the upper limb1,3. Next to the reduced movement capacity of the affected upper limb, several children with unilateral CP also seem to fail to spontaneously use the remaining capacity of their affected hand in daily life4-8. This disregard of the remaining capacity of the affected upper limb in unilateral CP has frequently been referred to as Developmental Disregard (DD) 4-11.
Apart from the traditional explanations of DD based on behavioral reinforcement theories 4, more recent studies have emphasized the importance of cognitive factors for understanding DD 5,9-11. These theories are based on the idea that certain motor deficits in children with unilateral CP are actually caused by dysfunctional cognitive processes that are necessary for successful goal-directed motor behavior, rather than by the movement restrictions itself. In this respect DD has been compared to the phenomenon of post-stroke motor neglect, suggesting visuo-spatial attention deficits9,11,12,. Alternatively, it has been proposed that the lack of use of the affected hand during crucial developmental periods does not only affect motor development, but is also associated with a delay of cognitive processes related to motor behavior 5,10.
Although DD has been extensively described in the literature and different theories have emphasized the possible contribution of altered cognitive processes 5,9-11, these cognitive processes related to goal-directed motor behavior have never been directly studied in unilateral CP. The current protocol was developed to assess cognitive aspects related to upper limb control in children with unilateral CP. The protocol describes the use of event-related brain potentials (ERPs) extracted from the ongoing EEG during manual target-response tasks.
ERPs offer the unique opportunity to measure neural responses that are time locked to distinct processing stages related to an overt response. That is, they allow to study different cognitive processes related to goal directed motor responses, such as response selection, response preparation, and response inhibition processes. Furthermore, ERPs consist of several components, each of them associated with different cognitive processes (e.g., the N1 with early attention processes, the N2 with cognitive control and the P3 with cognitive load and mental effort). Likewise, using ERPs during a simple manual target-response task enables us to directly study different cognitive processes related to different processing stages of upper limb control in children with unilateral CP with and without DD.
Approval for different experiments using this experimental design was obtained from the local Ethical Committee of the Faculty of Social Sciences (ECSW) from the Radboud University Nijmegen as well as by the regional Medical Research Ethics Committee, the CMO Arnhem-Nijmegen (Registration number: 2012/049; NL nr.: 39607.091.12).
1. Participants
2. Developing the Visual Target-response Task
3. The Data Acquisition System
NOTE: For measurements with children a mobile EEG lab is highly recommended. A mobile lab allows conducting the study in an environment that is familiar to the child (e.g., school, rehabilitation centre, home). If a mobile EEG setup is not available, ensure that the child is comfortable with the testing environment. During EEG preparation it is recommended to have some distraction/ entertainment for the child (e.g., watching a film).
4. Electrophysiological Recordings
5. Executing Target-response Task During EEG Recording
6. Offline Data Processing
The described protocol has been used in previously published research that studied the underlying cognitive factors contributing to the phenomenon of Developmental Disregard (DD) in children with unilateral Cerebral Palsy (CP) 10,11. Two slightly different protocols have been used in these publications to disentangle different cognitive processes involved in a goal-directed hand response towards a target. In both articles significant differences in cognitive processes between groups (DD and noDD) were found in reaction to target-stimulus presentation on midline electrodes (Fz, FCz, Cz). The representative results therefore show event-related brain potentials (ERPs) elicited by target-stimuli (elicited in a go/nogo-task as shown in Figure 1) in children with unilateral CP with and without DD. The figures presented are based on recordings of 24 children with unilateral CP between 5 and 11 years old.
Averaging across trials and participants produces an ERP waveform that consists of a series of positive and negative deflections: the ERP components. Figure 3 shows the grand-averaged ERPs of 24 children with unilateral CP in response to visual target-stimuli (as presented in Figure 1). Figure 3A shows the grand-averaged ERPs at FCz electrode position for a detailed view of the different potentials. It shows separate potentials for stimulus presentation to the affected side (AS) and to the less affected side (LAS). Figure 3B shows the representation of the potentialsacross the scalp. These grand-averaged ERPs show the mean reaction to stimuli presented to both sides, the affected (AS) and the less affected side (LAS). The grand-averages shown in Figures 3A and 3B contain a clear N1 and P2 component. Instead of a classic P3, a late latency negative component (Nc) is observed at fronto-central scalp position following target-stimuli. This fronto-central negative wave in children was reported earlier to be comparable to the classic P3 wave in adults 20 and has repeatedly been observed in target-response tasks in children with unilateral CP 10,11.
Figure 4 depicts group differences in ERPs between children with unilateral CP with and without DD. Figure 4A depicts the grand-averaged ERPs for both groups (DD and noDD) and each side (affected and less affected side) separately. For both groups the N1 and P2 components as well as the late latency negative component can be observed. However, the negative wave in the P3 domain is significantly larger in the DD group (p < .05). Furthermore, significant differences between the amplitude of the N1 component can be observed between groups. For statistical analyses the averaged values within fixed latency windows were analyzed. To depict significant differences, bar graphs are frequently used as shown in Figure 4B. To interpret the differences between the two groups, there is abundant literature that relates each ERP component to a specific cognitive operation. Whenever significant group differences are found existing literature should be used for appropriate interpretation of the meaning of these differences. How the findings of these representative results have been interpreted related to the research questions is documented in the corresponding publications 10,11.
In addition to the data derived from the ERP recordings, the different target-response tasks also generate behavioral data that can be used for additional analyses. Reaction times (time from target presentation to button press) and errors (e.g., omissions following target-stimuli) can be used as separate additional dependent variables. When studying children with unilateral CP, differences in reaction times between both hands (affected vs. less affected) can be expected 10,11 as shown in Figure 5. However, even if differences on ERPs are observed, it is possible that behavioral measurements show no differences between groups 10.
Another possibility to using reaction times and error scores as separate dimensions is to use a combined score by calculating the Inverse Efficiency Scores (IES). The IES are determined by the mean reaction time divided by the proportion of correct responses expressed in milliseconds 23. This method is considered to be especially useful in tasks with low (<10%) error rates 23. As the current protocol suggests very easy target-response procedures, a low error rate is anticipated and has been documented in prior published work 10,11.
Figure 1. Example of a target-response task experiment suitable for a broad age range. The example consists of visual stimuli of pairs of smiley figures presented against a white background. Two different types of trials are shown: target-trials for the right hand (left) and nogo-trials for the right hand (right). Both trials include background- and cue- stimuli. Please click here to view a larger version of this figure.
Figure 2. Schematic of electrode placement based on the international 10-20 system. The white electrodes represent the applied placement of the 32 active electrodes with linked mastoid reference placement and two active electrodes used for EOG measurement. The orange electrode represents the reference electrode. The gray electrode represents the ground electrode. Please click here to view a larger version of this figure.
Figure 3. Representative grand-averaged ERPs following target-stimuli. Grand-averaged ERP waveforms of 24 children with unilateral CP time locked to target-stimuli. (A) Grand-averaged ERPs at FCz electrode position. The continuous line represents the ERPs following target-stimulus presentation to the less affected side (LAS). The dashed line represents the ERPs following target-stimulus presentation to the affected side (AS). The time windows around the maxima of the different components of interest (N1, P2, and P3/Nc) are highlighted. (B) The representation of the grand-averaged ERPs across the scalp. Please click here to view a larger version of this figure.
Figure 4. Representative grand-averaged ERPs following target-stimuli displaying differences between two groups. (A) Grand-averaged ERP waveforms of the same 24 children with unilateral CP as presented in Figure 3, time locked to target-stimuli. Twelve children were classified as having DD. The blue lines represent the ERPs of children with unilateral CP without DD (noDD; N = 12). The orange lines represent the ERPs for children with DD (DD; N = 12). The continuous lines represent the ERPs following target-stimulus presentation to the less affected side (LAS). The dashed lines represent the ERPs following target-stimulus presentation to the affected side (AS). The time windows around the maxima of the different components of interest (N1, P2, and P3/Nc) are highlighted. (B) P3/Nc amplitudes (mean ± SEM µV) to target-stimuli as depicted in Figure 3A. The blue bars represent the mean values of P3/Nc amplitude for children without DD. The orange bars represent the mean values of P3/Nc amplitude for children with DD. The clear bars represent the results of the less affected side (LAS). The striped bars represent the results of the affected side (AS). The asterisk indicates a significant (p< .05) difference between both groups concerning the P3/Nc amplitude. Please click here to view a larger version of this figure.
Figure 5. Representative reaction time data displaying differences between affected and less affected hand. Depicted are means ± SEMs. The gray bar shows the mean reaction time to target-stimuli of 24 children with unilateral CP with their less affected hand. The black bar shows the mean reaction time to target-stimuli of the same children with their affected hand. Please click here to view a larger version of this figure.
This article presents a protocol developed to directly assess cognitive processes related to movement control during simple upper limb movements in children with unilateral Cerebral Palsy (CP) and Developmental Disregard (DD). Unilateral CP is a non-progressive neurodevelopmental disorder that is characterized by movement deficits on one side of the body, primarily affecting the upper limb 1,3. Children with DD show a disregard of the preserved capacity of their affected hand during spontaneous daily activities 5. The current protocol was developed to unravel the related cognitive mechanisms that might contribute to the phenomenon of DD with the goal of improving existing rehabilitation procedures for these children. By using this protocol valuable new insights were obtained about the underlying cognitive processes related to simple upper limb movements in children with DD 10,11.
Critical to this protocol is the use of event-related brain potentials (ERPs) during a very easy executable target-response task. The simplicity of conducting the task allows for the inclusion of young children with movement restrictions. Recording ERPs during the task is used as a powerful non-invasive neuroimaging technique that measures neural activity with a high temporal resolution. Using this protocol allows for the study of the cognitive aspects related to distinct processing stages of upper limb control in children with unilateral CP. As such, it extends behavioral examinations to the neurophysiological level. Furthermore, the protocol can be easily adapted by presenting different stimuli (e.g., cue-stimuli, nogo-stimuli) or adapting stimulus presentation time as well as inter-stimulus intervals. It is therefore possible to directly assess different cognitive processes involved in upper limb control (e.g., response preparations vs. response inhibition).
Next to the idea that certain motor deficits in children with unilateral CP are actually caused by dysfunctional cognitive processes, another important aspect that might contribute to the observed motor deficits in children with DD is a possible sensory deficit 18. Due to injury to specific thalamocortical and corticocortical pathways some children with unilateral CP do not receive accurate sensory feedback from their movements 24. This in turn has been proposed to lead to an underuse of the affected hand, i.e., DD. The current protocol does not directly assess this possible sensory deficit. For the detailed assessment of different sensory processing in children with movement disabilities, we refer to the work of Maitre and Key(2014)25.
To ensure accurate and valid results, there are a few critical points to keep in mind. Before starting an EEG experiment, it is first of all important to understand the associated limitations of this technique. The relatively poor spatial resolution as well as the difficulty of inferring subcortical activity are important issues to consider. If the research question is aimed at neuro-anatomically localizing specific processes during upper limb control, alternative neuroimaging methods should be considered (e.g., (f)MRI). However, it should be clearly stated that the non-invasiveness of EEG as well as the possibility of using a mobile lab to measure at locations that are familiar to the child offers a tremendous advantage over other techniques.
Next to the poor spatial resolution of EEG measurements, the noise introduced by blinks and muscle activity is also disadvantageous. Especially in children it is very difficult to give appropriate instructions to reduce these artifacts. It is therefore very important to use a protocol that keeps children's attention and does not take too long.
The current protocol offers new empirical insights into the underlying cognitive processes that contribute to the phenomenon of DD in children with unilateral CP 10,11. These insights might be of high value not only for further understanding of DD, but also for individualizing the current therapies. Furthermore, the capability of this protocol to directly assess underlying cognitive factors of upper limb control could give rise to a possible broader implementation for research on cognitive aspects related to movement development in children.
The authors have nothing to disclose.
This work is part of a doctoral dissertation that was supported by grants from (in alphabetical order): Hersenstichting Nederland, Johanna KinderFonds, Stichting Rotterdams Kinderrevalidatie Fonds Adraanstichting, Phelps Stichting voor Spastici, and Revalidatie fonds.
"Presentation" stimulus delivery and experimental control program for neuroscience | NeuoBehavioralSystems | company web address: http://www.neurobs.com/index_html Alternate stimulus presenation software can be used |
|
Button Box, for time accurate(1ms) button press registration | TSG, Radboud University Nijmegen | company web address: http://tsgdoc.socsci.ru.nl/ index.php?title=ButtonBoxes Alternate button press registration device can be used |
|
BrainAmp DC 32 channels EEG/EP system, with BUA 128 USB interface S/N: AMP13061963DC, BUA128-1302289, EIB13010349 |
MedCaT B.V. | BP-01100 | company web address: http://www.medcat.nl/Research/acticap.htm For measurements with children a mobile EEG lab is highly recommended |
Acticap 32 channel standard cap set S/N: aCAP11101664, aEB13032942 |
MedCaT B.V. | BP-04200 | company web address: http://www.medcat.nl/Research/acticap.htm It is highly recommended to use an active electrode system |
BrainVision Recorder Software license USB Dongel: UR11471 & BrainVision Analyzer Software license USB Dongel: U12512 |
Brain products | BP00020 & BP00120 |
company web address: http://www.brainproducts.com/ Alterante recording and analyzing software can be used |
NuPrep | MedCatSupplies | 10-30 | company web address: http://www.medcat.nl/supplies/ Alternate skin preparation exfoliants can be used |
Skin Conductance Electrode Paste | MedCatSupplies | TD-246 | company web address: http://www.medcat.nl/supplies/ Alternate EEG conductive electrode gel can be used |
Blunt needle and syringe kit |
MedCatSupplies | JG161.5 & 30xxxx |
company web address: http://www.medcat.nl/supplies/ Needle and syringe kit is used to apply conductive gel to electrode embedded in the EEG cap |
Acticap Holder for Active Electrodes and stickers |
MedCatSupplies | BP-04244 & Z85-10x |
company web address: http://www.medcat.nl/supplies/ Acticap Holders and stickers are used for fixating EOG electrodes |