In this video article we describe the use of a new ex vivo model of acute herpes simplex virus type I corneal epithelial infection.
Herpes keratitis is one of the most severe pathologies associated with the herpes simplex virus-type 1 (HSV-1). Herpes keratitis is currently the leading cause of both cornea-derived and infection-associated blindness in the developed world. Typical presentation of herpes keratitis includes infection of the corneal epithelium and sometimes the deeper corneal stroma and endothelium, leading to such permanent corneal pathologies as scarring, thinning, and opacity 1.
Corneal HSV-1 infection is traditionally studied in two types of experimental models. The in vitro model, in which cultured monolayers of corneal epithelial cells are infected in a Petri dish, offers simplicity, high level of replicability, fast experiments, and relatively low costs. On the other hand, the in vivo model, in which animals such as rabbits or mice are inoculated directly in the cornea, offers a highly sophisticated physiological system, but has higher costs, longer experiments, necessary animal care, and a greater degree of variability.
In this video article, we provide a detailed demonstration of a new ex vivo model of corneal epithelial HSV-1 infection, which combines the strengths of both the in vitro and the in vivo models. The ex vivo model utilizes intact corneas organotypically maintained in culture and infected with HSV-1. The use of the ex vivo model allows for highly physiologically-based conclusions, yet it is rather inexpensive and requires time commitment comparable to that of the in vitro model.
All reagents and equipment were purchased sterile or were sterilized prior to the procedure. This article describes the steps of setting up the ex vivo model beginning with a pre-enucleated eye. In our experiments, we use fresh whole eyeballs from young (8-12 wks) albino rabbits (Pel-Freez Biologicals, Rogers, AR). In addition, we use human corneas obtained from the local eye bank. If performing enucleation yourself, take care to avoid damaging the cornea or the limbus during the procedure. Rabbit enucleation protocols can be found elsewhere 2.
Part 1: Excision of the Corneoscleral Button
Part 2: Introduction of Cornea into Organotypic Culture
Part 3: Infection with HSV-1 and Treatment with Experimental Drugs
Part 4: Sample Collection
Representative Results
Most of the methods available for studying cells in tissue culture can be easily adapted for use in corneas infected with HSV-1 ex vivo. Shown here are representative results for a few of the most common techniques applicable to studying HSV-1 infection – qPCR (Figure 1D), qRT-PCR (Figure 1B), Western blot (Figure 1F), plaque assay (Figure 1C), and tissue immunofluorescence (Figure 1E).
Figure 1. Analysis of corneas infected with HSV-1 ex vivo. (A) Schematic representation of the ex vivo model of acute corneal epithelial HSV-1 infection. (B-F) Analysis of corneas infected using the method outlined in this video article. Explanted rabbit corneas were infected with 1×104 PFU/cornea of strain KOS HSV-1 and cultured in the presence (PAA) or absence (Mock) of phosphonoacetic acid (400 μg/ml), a known inhibitor of HSV replication. (B) Total RNA was collected at the indicated time points, and viral transcription was assessed by qRT-PCR with primers for HSV-1 polymerase. Primers against 18S rRNA were used as a reference. n=3. Error bars indicate ± SEM. (C) Culture medium was collected at 48 hpi, and infectious particle production was assessed by plaque assay on CV-1 monolayers. (D) Total DNA was collected at 48 hpi, and viral genome replication was assessed in a qPCR assay with primers for the HSV-1 genome. Primers against GAPDH were used as a reference. n=3. Error bars indicate ± SEM. (E) Mock-treated corneas were flash-frozen at 48 hpi, sectioned, and analyzed by indirect immunofluorescence for the presence of a viral early protein (ICP8) within the infected epithelium. Nuclei are counterstained with Höchst 33258. (F) Protein lysates were collected at 48 hpi, and expression of a viral protein (ICP0) was assessed by Western blot. BCA assay was used to ensure equal loading of samples. hpi = hours post infection.
In this video article we describe a method for studying acute corneal epithelial HSV-1 infection in an ex vivo model. This model is a useful stepping stone between the in vitro and the in vivo models, because it allows for physiologically-accurate validation of cell culture results and, thereby, limits the amount of animal experimentation that must be performed. In addition, the ex vivo model provides a unique and invaluable opportunity to study epithelial herpes infection in intact human corneas. Outlined below are some considerations that must be taken into account when using this model:
Potential modifications of the ex vivo herpes keratitis model not explored in this video article:
The authors have nothing to disclose.
The support of the Lions Eye Bank of Delaware Valley was invaluable for this work. Primary mouse monoclonal antibody against ICP8 was a kind gift from Dr. David Knipe (Harvard Medical School). We also thank Dr. Stephen Jennings (Drexel University College of Medicine) and Dr. Peter Laibson (Wills Eye Institute) for helpful discussions and expertise.
Reagents/Supplies | Company | Catalogue # |
Minimum Essential Medium (MEM) | Mediatech | 10-010-CV |
Non-Essential Amino Acids (100x solution) | Mediatech | 25-025-CI |
L-Glutamine | Mediatech | 25-005-CI |
Penicillin G Sodium Salt | Sigma | P3032 |
Streptomycin Sulfate Salt | Sigma | S9137 |
Agarose | Invitrogen | 15510-027 |
Phosphate Buffered Saline (PBS) | Prepared in lab | N/A |
Trypsin EDTA (1x) | Mediatech | 25-053-CI |
DNeasy Blood & Tissue Kit | QIAGEN | 69504 |
RNeasy Mini Kit | QIAGEN | 74104 |
Laemmli Buffer | Prepared in lab | N/A |
Optimal Cutting Temperature (OCT) Compound | Tissue-Tek | 4583 |
Whole Rabbit Eyes (Young) | Pel-Freez | 41211-2 |
Human Corneas and Whole Eyes | Local Eye Bank | N/A |
12 Well Porcelain Spot Plate | Avogadro’s Lab Supply | 1877 |
35 mm Tissue Culture Dish | Falcon | 353001 |
6 Well Cell Culture Plate | Greiner Bio-One | 657160 |
Cryomold Intermediate | Tissue-Tek | 4566 |