A murine model for ventilator induced lung injury is an important tool to study an acute lung injury in vivo. Here, we report an easy applicable in situ model for acute lung injury using high-pressure mechanical ventilation to induce acute failure of the lung.
Murine models are extensively used to investigate acute injuries of different organs systems (1-34). Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation (1-3, 5, 8, 26, 30, 33-36). ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange (36). We have developed a murine model of ALI by using a pressure-controlled ventilation to induce ventilator-induced lung injury (2). For this purpose, C57BL/6 mice are anesthetized and a tracheotomy is performed followed by induction of ALI via mechanical ventilation. Mice are ventilated in a pressure-controlled setting with an inspiratory peak pressure of 45 mbar over 1 – 3 hours. As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed (2). Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes (1-3, 5). Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.
General remarks:
All operations should be performed under an upright dissecting microscope (Olympus, SZX10 with Z-Axis Crank Post with STU2 Stand Boom Stand) and by using a surgical coagulator (11). The experimental groups should be matched as best as possible in age and weight to ensure comparability of the results. Temperature, blood pressure, anesthesia and fluid administration should be stable throughout.
1. Anesthesia and trachea preparation
2. Technique of ventilator-induced lung injury
3. Recovery of tissue samples
After 3 hours of mechanical ventilation, samples are collected to assess the extent of lung injury. We recommend collecting brochnoalveolar lavage fluid (BAL), arterial blood and lung tissue.
4. Measurement of lung injury
We recommend using the following outcome parameters to assess the extent of lung injury: Perform an albumin ELISA (Bethyl Laboratories, USA) and a myeloperoxidase (MPO) ELISA (Hycult Biotechnology, USA) to assess the extent of barrier dysfunction and the amount of inflammatory cells in the BAL fluid. Perform an MPO ELISA also form the lung tissue. If wet-to-dry ratio is to be measured we do not obtain BAL fluid and the pulmonary circulation is not flushed (see 3.3). Measure the weight of the lungs after excision. Then lungs are lyophilized for 48 h and lung tissue again is measured. Then the wet-to-dry ratio is measured as mg of water per mg of dry tissue (5).
Figure 1. Protein content in the BAL in response to VILI. Mice were anesthetized with pentobarbital, mechanical ventilation
was instituted and mice were ventilated using pressure-controlled settings (inspiratory pressure of 45 mbar, positive end-exspiratory pressure
3 mbar, 100% inspired oxygen concentration). After 0, 1, 2 and 3 hours of ventilation BAL was harvested and the protein content was quantified using a
bicinchoninic acid assay (BCA assay). The relative change of the protein content is shown normalized to 0 hours of ventilation
(n=4 per group, * indicates p < 0.05 compared to control, mean ±SEM)
The present study describes a technique of performing ventilator-induced lung injury in mice. This model demonstrates highly reproducible injury due to high pressure ventilation. Investigators who consider studying acute-lung injury in mice may benefit from this model.
The authors have nothing to disclose.
The present studies are supported by National Heart, Lung, and Blood Institute Grant R01-HL0921, R01-DK083385 and R01HL098294 to H. K. Eltzschig, the 1K08HL102267-01 to T. Eckle, and Foundation for Anesthesia Education and Research Grants to T. Eckle and H. K. Eltzschig, and American Heart Association Grant to T. Eckle and H. K. Eltzschig and Deutsche Forschungsgemeinschaft (DFG) research fellowship to M. Koeppen.
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Sodium Pentobarbital (Fatal Plus) | Vortech Pharmaceutical Ls, Ltd, | V.P.L. 9372 | 4mg/mL in saline |
Insyte 22 G | Beckton Dickinson | n/a | |
Suture, silk 4.0 | Harvard Apparatus | 517698 | |
Suture, Prolene 8.0 | Ethicon, USA | M8739 | reusable |
Siemens 900°C | DRE Veterinary, USA | # 336 | refurbished |
dissecting microscope (SZX10 ) | Olympus | n/a | consider generous working distance |
Heating Table | Rt, Effenberger, Germany | n/a | only and single provider |
Blood pressure device | Cyber Sense, Inc | BPM02 | |
I STAT | Abbott | n/a |