概要

使用自动三维神经元重建软件进行树突状脊柱定量

Published: September 27, 2024

概要

树突棘是大多数兴奋性突触的突触后隔室。树突状脊柱形态的改变发生在神经发育、衰老、学习以及许多神经和精神疾病的过程中,这强调了可靠的树突状脊柱分析的重要性。该协议描述了使用自动三维神经元重建软件准确且可重复地量化树突棘形态。

Abstract

突触连接允许神经元之间交换和处理信息。兴奋性突触的突触后部位通常形成于树突棘上。树突棘是以突触可塑性、神经发育以及神经和精神疾病为中心的研究中非常有趣的结构。树突棘在其生命周期中会发生结构修饰,其特性(如脊柱总数、树突棘大小和形态学定义的亚型)会随着不同的过程而变化。描述调节树突棘这些结构改变的分子机制依赖于形态学测量。这需要准确且可重复的树突棘分析来提供实验证据。本研究概述了使用 Neurolucida 360(自动三维神经元重建软件)进行树突棘定量和分类的详细方案。该协议允许确定关键的树突状脊柱特性,例如总脊柱密度、脊柱头部体积和脊柱亚型的分类,从而能够有效分析树突状脊柱结构表型。

Introduction

树突棘是树突的突起,通常包括谷氨酸能突触的突触后部位 1,2。树突棘在突触可塑性领域特别有趣。当突触强度发生变化时,棘通常会发生变化,在长期突触增强时变得更大更强,在长期突触抑制中变得更小更弱 3,4,5,6,7。除了突触可塑性之外,树突棘的轮廓在整个生命周期中都会发生变化。在早期发育中,有一段树突状脊柱形成和生长的时期,然后是树突状脊柱修剪,直到达到稳定状态 8,9,10。在衰老的大脑中,脊柱缺失伴随着大脑萎缩和认知能力下降11。此外,许多神经、神经退行性和精神疾病的特征是异常的树突棘。受精神分裂症影响的个体的多个大脑区域的树突棘较少,可能是由于突触修剪改变所致12。自闭症谱系障碍也以树突状脊柱病变为特征13。树突状脊柱缺失是阿尔茨海默病和帕金森病的标志14,15。鉴于研究主题广泛,包括对树突状脊柱特性的研究,准确定量脊柱的技术至关重要。

染色,即高尔基体法,或通过染料填充或表达荧光蛋白标记神经元是树突状脊柱可视化的常用方法 16,17,18。可视化后,可以使用各种免费和市售软件客户端对 spine 进行分析。分析的预期结果是决定哪种软件最有用的重要因素。斐济是解决以树突棘密度为中心的问题的可行软件选项。然而,这种技术在很大程度上依赖于耗时的手动计数,这可能会引入潜在的偏差。SpineJ 等新插件允许自动定量,此外还允许更准确的脊柱颈部分析19。这些方法的一个缺点是丢失了用于确定脊柱体积的三维分析,因为 SpineJ 仅限于二维图像堆栈。此外,通过这些过程获取脊柱亚型信息变得具有挑战性。四种主要的脊柱亚型,薄、蘑菇、粗短和丝状伪足,都意味着单独的功能,并且主要通过形态学分类20。细刺的特点是细长的脖子和清晰的头部21。蘑菇刺有一个更大而明显的刺头22。粗短的刺很短,头部和颈部之间几乎没有差异23.丝状伪足是未成熟的棘,脖子细长,没有明显可观察到的头部24。虽然分类提供了有价值的信息,但 spine 存在于维度的连续体上。分类基于形态测量范围25,26。在这种方法中,手动测量棘以进行分类会加剧研究人员的后勤负担。

其他专门针对三维树突状脊柱分析的软件选项更适合研究脊柱体积和亚型属性 27,28,29,30,31。尽管三维分析存在困难,例如 z 平面分辨率差和拖尾,但这些软件选项允许以用户引导的半自动方式可靠地重建树突和树突棘。将识别出的脊柱自动分类为其亚型也是其中一些脊柱分析软件包中的一个功能。这可以减轻对潜在工作量和实验偏倚的担忧。Neurolucida 360 是一种市售软件,可实现可靠且可重复的三维树突棘识别和分类32。在这里,我们提出了一个全面的协议,以有效地准备固定组织、获取图像,并最终使用该软件对树突棘进行量化和分类。

Protocol

所有动物程序均遵循美国国立卫生研究院在校内研究中使用动物指南,并得到美国国家心理健康研究所动物护理和使用委员会的批准。 1. 固定海马切片的制备 通过腹膜内注射氯胺酮/甲苯噻嗪(氯胺酮:100 mg/kg;甲苯噻嗪:8 mg/kg)。通过捏尾验证麻醉并将鼠标贴在灌注板上。 使用大型手术剪刀去除胸部的皮肤和毛皮,以便?…

Representative Results

有效利用这种分析方法从选择树突段进行追踪开始。如图 1 所示,用于描摹的理想树突并不靠近其他树突。并行运行的树突可能会导致无法正确识别来自相邻树突的书脊。树突在不同的 z 平面中直接相交或垂直延伸,也大大增加了准确的树枝状追踪的难度。注意枝晶厚度的差异也很重要。如前所述,不同厚度的树突的脊柱密度存在关键差异<sup class="…

Discussion

该协议详细介绍了样品制备、成像以及使用三维重建软件对树突棘进行定量和分类的过程的具体步骤。该软件是一个强大的工具,能够生成强大的结构数据,有助于各种研究。在整个过程中,有一些关键步骤可以减轻该协议的方法负担并提高数据的整体输出。标记树突棘的方法是研究人员在开始该协议之前首先应该考虑的事情之一。标记方法不足可能会导致脊柱定量问题…

開示

The authors have nothing to disclose.

Acknowledgements

由衷感谢 Carolyn Smith、Sarah Williams Avram、Ted Usdin 和 NIMH SNIR 提供的技术帮助。我们还要感谢高露洁大学贝塞斯达生物医学研究小组。这项工作得到了 NIMH 校内计划(1ZIAMH002881 至 ZL)的支持。

Materials

518F Immersion Oil Zeiss 444960-0000-000
Cryostat Leica CM3050S For slice preparation
Fine Forceps FST 11150-10
Hemostat Forceps FST 13020-12
Large Surgical Scissors FST 14002-16
LSM 880 Confocal Microscope Zeiss LSM 880
Microscope Cover Glass Fisherbrand 12-541-035
Mini-Peristaltic Pump II Harvard Apparatus 70-2027 For perfusions
Neurolucida 360 MBF Bioscience v2022.1.1 Spine Analysis Software
Neurolucida Explorer MBF Bioscience v2022.1.1 Spine Analysis Software
OCT Compound Sakura Finetek 4583 For cryostat sectioning
Paraformaldehyde (37%) Fisherbrand F79-1
Plan-Apochromat 63x/1.40 Oil DIC Zeiss 440762-9904-000
Scalpel Blade FST 10022-00
Small Surgical Scissors FST 14060-09
Spatula  FST 10091-12
Sucrose FIsherbrand S5-500
Superfrost Plus Microslides Diagger ES4951+
Vectashield HardSet Mounting Medium Vector Laboratories H-1400-10

参考文献

  1. Gray, E. G. Electron microscopy of synaptic contacts on dendrite spines of the cerebral cortex. Nature. 183, 1592-1593 (1959).
  2. Ramón Y Cajal, S. Sobre la fibras nerviosas de la capa molecular del cerebelo. Rev Trim Histol Norm. 1, 33-49 (1888).
  3. Desmond, N. L., Levy, W. Changes in the numerical density of synaptic contacts with long-term potentiation in the hippocampal dendate gyrus. J Comp Neurol. 253, 466-475 (1986).
  4. Engert, F., Bonhoeffer, T. Dendritic spine chances associated with hippocampal long-term synaptic plasticity. Nature. 399, 66-70 (1999).
  5. Yang, Y., Wang, X. B., Frerking, M., Zhou, Q. Spine expansion and stabilization associated with long-term potentiation. J Neurosci. 28 (22), 5740-5751 (2008).
  6. Oh, W. C., Parajuli, L. K., Zito, K. Heterosynaptic structural plasticity on local dendritic segments of hippocampal ca1 neurons. Cell Rep. 10 (2), 162-169 (2015).
  7. Shinoda, Y., Tanaka, T., Tominaga-Yoshino, K., Ogura, A. Persistent synapse loss induced by repetitive ltd in developing rat hippocampal neurons. PLoS One. 5 (4), e10390 (2010).
  8. Markus, E. J., Petit, T. L. Neocortical synaptogenesis, aging, and behavior lifespan development in the motor-sensory system of the rat. Exp Neurol. 96 (2), 262-278 (1987).
  9. Duan, H., Wearne, S. L., Rocher, A. B., Macedo, A., Morrison, J. H., Hof, P. R. Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex. 13 (9), 950-961 (2003).
  10. Chen, C. C., Lu, J., Zuo, Y. Spatiotemporal dynamics of dendritic spines in the living brain. Front Neuroanat. 8, 28 (2014).
  11. Dickstein, D. L., Weaver, C. M., Luebke, J. I., Hof, P. R. Dendritic spine changes associated with normal aging. 神経科学. 251, 21-32 (2013).
  12. Glausier, J. R., Lewis, D. A. Dendritic spine pathology in schizophrenia. 神経科学. 251, 90-107 (2013).
  13. Phillips, M., Pozzo-Miller, L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett. 601, 30-40 (2015).
  14. Dorostkar, M. M., Zou, C., Blazquez-Llorca, L., Herms, J. Analyzing dendritic spine pathology in alzheimer’s disease: Problems and opportunities. Acta Neuropathol. 130 (1), 1-19 (2015).
  15. Villalba, R. M., Smith, Y. Loss and remodeling of striatal dendritic spines in parkinson’s disease: From homeostasis to maladaptive plasticity. J Neural Transm (Vienna). 125 (3), 431-447 (2018).
  16. Cheng, C., Trzcinski, O., Doering, L. C. Fluorescent labeling of dendritic spines in cell cultures with the carbocyanine dye "dii&#34. Front Neuroanat. 8, 30 (2014).
  17. Feng, G., et al. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of gfp. Neuron. 28 (1), 41-51 (2000).
  18. Baloyannis, S. J. Staining neurons with golgi techniques in degenerative diseases of the brain. Neural Regen Res. 10 (5), 693-695 (2015).
  19. Levet, F., Tonnesen, J., Nagerl, U. V., Sibarita, J. B. SpineJ: A software tool for quantitative analysis of nanoscale spine morphology. Methods. 174, 49-55 (2020).
  20. Peters, A., Kaiserman-Abramof, I. R. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat. 127 (4), 321-356 (1970).
  21. Pfeiffer, T., et al. Chronic 2p-sted imaging reveals high turnover of dendritic spines in the hippocampus in vivo. Elife. 7, e34700 (2018).
  22. Harris, K. M. Structure, development, and plasticity of dendritic spines. Curr Opin Neurobiol. 9 (3), 343-348 (1999).
  23. Hering, H., Sheng, M. Dendritic spines: Structure, dynamics, and regulation. Nat Rev Neurosci. 2 (12), 880-888 (2001).
  24. Jontes, J. D., Smith, S. J. Filopodia, spines, and the generation of synaptic diversity. Neuron. 27 (1), 11-14 (2000).
  25. Pchitskaya, E., Bezprozvanny, I. Dendritic spines shape analysis-classification or clusterization? Perspective. Front Synaptic Neurosci. 12, 31 (2020).
  26. Berry, K. P., Nedivi, E. Spine dynamics: Are they all the same. Neuron. 96 (1), 43-55 (2017).
  27. Rodriguez, A., Ehlenberger, D. B., Dickstein, D. L., Hof, P. R., Wearne, S. L. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One. 3 (4), e1997 (2008).
  28. Swanger, S. A., Yao, X., Gross, C., Bassell, G. J. Automated 4D analysis of dendritic spine morphology: Applications to stimulus-induced spine remodeling and pharmacological rescue in disease model. Mol Brain. 4, 38 (2011).
  29. Basu, S., et al. Quantitative 3-D morphometric analysis of individual dendritic spines. Sci Rep. 8 (1), 3545 (2018).
  30. Ekaterina, P., Peter, V., Smirnova, D., Vyacheslav, C., Ilya, B. Spinetool is an open-source software for analysis of morphology of dendritic spines. Sci Rep. 13 (1), 10561 (2023).
  31. Li, B. Z., Sumera, A., Booker, S. A., Mccullagh, E. A. Current best practices for analysis of dendritic spine morphology and number in neurodevelopmental disorder research. ACS Chem Neurosci. 14 (9), 1561-1572 (2023).
  32. Dickstein, D. L., et al. Automatic dendritic spine quantification from confocal data with Neurolucida 360. Curr Protoc Neurosci. 77, 1-21 (2016).
  33. Gage, G. J., Kipke, D. R., Shain, W. Whole animal perfusion fixation for rodents. J Vis Exp. (65), e3564 (2012).
  34. Parajuli, L. K., Koike, M. Three-dimensional structure of dendritic spines revealed by volume electron microscopy techniques. Front Neuroanat. 15, 627368 (2021).
  35. Ferreira, J. S., et al. Distance-dependent regulation of NMDAR nanoscale organization along hippocampal neuron dendrites. Proc Natl Acad Sci U S A. 117 (39), 24526-24533 (2020).
  36. Megias, M., Emri, Z. s., Freund, T. F., Gulyas, A. I. Total number and distribution of inhibitory and excitatory synapses on hippocampal ca1 pyramidal cells. 神経科学. 102 (3), 527-540 (2001).
  37. Katz, Y., et al. Synapse distribution suggests a two-stage model of dendritic integration in ca1 pyramidal neurons. Neuron. 63 (2), 171-177 (2009).
  38. Bourne, J., Harris, K. M. Do thin spines learn to be mushroom spines that remember. Curr Opin Neurobiol. 17 (3), 381-386 (2007).
  39. Runge, K., Cardoso, C., De Chevigny, A. Dendritic spine plasticity: Function and mechanisms. Front Synaptic Neurosci. 12, 36 (2020).
  40. Tonnesen, J., Katona, G., Rozsa, B., Nagerl, U. V. Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci. 17 (5), 678-685 (2014).
  41. Mattila, P. K., Lappalainen, P. Filopodia: Molecular architecture and cellular functions. Nat Rev Mol Cell Biol. 9 (6), 446-454 (2008).
  42. Grutzendler, J., Kasthuri, N., Gan, W. Long-term dendritic spine stability in the adult cortex. Nature. 420 (6917), 812-816 (2002).

タグ

Play Video

記事を引用
Keary III, K. M., Sojka, E., Gonzalez, M., Li, Z. Dendritic Spine Quantification Using an Automatic Three-Dimensional Neuron Reconstruction Software. J. Vis. Exp. (211), e66493, doi: (2024).

View Video