概要

脑类器官中单细胞和单核转录组的生成和下游分析

Published: March 29, 2024
doi:

概要

在这里,我们介绍了一种使用单细胞和单核RNA测序生成和下游分析人脑类器官的综合方案。

Abstract

在过去的十年中,单细胞转录组学已经取得了显着发展,并成为同时分析单个细胞基因表达谱的标准实验室方法,从而可以捕获细胞多样性。为了克服难以分离的细胞类型带来的限制,可以使用一种旨在恢复单核而不是完整细胞的替代方法进行测序,使单个细胞的转录组分析普遍适用。这些技术已成为大脑类器官研究的基石,使它们成为发育中的人类大脑的模型。利用单细胞和单核转录组学在脑类器官研究中的潜力,该协议提供了一个分步指南,涵盖了类器官解离、单细胞或细胞核分离、文库制备和测序等关键程序。通过实施这些替代方法,研究人员可以获得高质量的数据集,从而能够识别神经元和非神经元细胞类型、基因表达谱和细胞谱系轨迹。这有助于对塑造大脑发育的细胞过程和分子机制进行全面研究。

Introduction

在过去的几年中,类器官技术已成为培养器官样组织的一种有前途的工具1,2,3。特别是对于不容易接触到的器官,如人脑,类器官提供了深入了解发育和疾病表现的机会4.因此,大脑类器官已被广泛用作实验模型,用于研究各种人类脑部疾病,包括发育、精神疾病甚至神经退行性疾病 4,5,6

随着单细胞转录组分析技术的出现,原代人体组织和复杂的体外模型可以以前所未有的粒度水平进行研究,为健康和疾病中细胞亚群水平上的基因表达变化提供机制见解,并为新的假定治疗靶点提供信息7,8,9.通过利用单细胞转录组分析来评估细胞组成、可重复性和大脑类器官技术的保真度,类器官领域取得了进展 10,11,12。单细胞 RNA 测序 (scRNA-seq) 使细胞分类和患病类器官中的遗传失调鉴定成为可能13,14。重要的是,正是类器官组织的复杂性使得有必要实施能够分析单个细胞的技术。使用批量转录组分析(批量 RNA 测序)等方法对类器官进行表征会导致细胞异质性和基因表达谱被掩盖,这些异质性和基因表达谱在复杂组织内的所有类型细胞中均被平均,最终限制了我们对健康和疾病中类器官发育过程中正在进行的过程的理解 15,16,17.随着scRNA-seq方法的不断发展,越来越多的图谱正在被创建,例如Uzquiano等人的Allen Brain Atlas或Single cell atlas of human brain organoids等资源18

从脑类器官中成功实现 scRNA-seq 依赖于有效分离和捕获完整细胞。由于脑类器官的解离以获得单个细胞是基于酶消化的,因此它可以通过诱导应激和细胞损伤来影响基因表达模式19,20。因此,将组织解离成单个细胞是最关键的一步。另一种方法是单核 RNA 测序 (snRNA-seq),它有助于从新鲜和冷冻组织中无酶提取细胞核21,22。然而,从组织中分离细胞核会带来其他挑战,例如目标细胞类型的富集以及与细胞相比细胞核的 RNA 含量低。

脑类器官的转录组研究通常使用 scRNA-seq 10,18,23 进行。然而,单核的分离可能提供了一种正交和补充方法来研究类器官的转录组学特征。在这里,我们介绍了一个用于脑类器官scRNA和snRNA-seq的工具箱,并讨论了获得最佳质量测序数据的关键点。

Protocol

所描述的方案在Max Delbrück分子医学中心(批准号:138/08)的生物安全1级实验室中进行,符合要求并符合欧盟和国家的研究伦理规则。 1. 从诱导多能干细胞 (iPSCs) 衍生出前脑类器官 注:该协议已针对在来自不同公司的各种干细胞培养基中培养的几种不同iPSC系进行了测试(表1)。前脑类器官的产生高度依赖于高质量的 iPSC 和 60%-…

Representative Results

为了使用 scRNA-seq 和 snRNA-seq 研究脑类器官的细胞类型组成,在培养 30 天后收获脑类器官,因为该阶段的类器官已经表现出由中间祖细胞包围的祖细胞和早期神经元组成的神经上皮环 4,18。在整个生长和培养过程中监测类器官的质量对于获得可靠的单细胞和单核数据至关重要。 类器官是通过将iPSC聚集到胚状体中而形成的(<strong class…

Discussion

单细胞和单细胞核的转录组学分析已成为理解复杂组织内基因调控机制的关键工具。这两种方法都可以对大脑类器官进行转录组研究。为了确保实验的整体成功,起始材料的质量具有高度相关性。因此,有必要定期切割类器官以防止形成坏死核心26。也可以通过气液界面培养物来消除这个问题27.为了减少由于类器官异质性导致的批量效应,我们建议每次提取至?…

開示

The authors have nothing to disclose.

Acknowledgements

我们感谢 Valeria Fernandez-Vallone 提供 Miltenyi 神经解离套件的原始说明。我们还要感谢 Max Delbrueck Centrum 的基因组学技术平台提供 NP40 裂解缓冲液的配方和建立此方案的宝贵建议。我们还要感谢玛格丽塔·赫尔佐格(Margareta Herzog)和亚历山德拉·切尔尼切夫(Alexandra Tschernycheff)对实验室组织的支持。

Materials

1,4-DITHIO-DL-THREIT-LSG., F. D. MOL.-BIOL., ~1 M IN H2O (DTT) Sigma  43816-10ML
1.5 ml DNA low binding tubes  VWR 525-0130 microcentrifuge tube
10x Cellranger pipeline  analysis pipline
15 ml Falcon Falcon Centrifuge tube
2-Mercaptoethanol (BME) Life Technologies 21985023
50 ml Falcon Falcon Centrifuge tube
A83-01 Bio Technologies 379762
Antibiotic/Antimycotic Solution (100X) Life Technologies 15240062
B-27 Plus Supplement Life Technologies 17504044
B-27 Supplement without vitamin A Life Technologies 12587010
Bovine serum albumin, fatty acid free (BSA) Sigma Aldrich A8806-5G 
cAMP Biogems 6099240
cAMP Biogems 6099240
C-CHIP NEUBAUER IMPROVED VWR DHC-N01
Cell strainer 40 µm Neolab 352340
Cell strainer 70 µm (white) Nylon Sigma CLS431751-50EA
Chromium Controller & Next GEM Accessory Kit 10X Genomics 1000204
Chromium Next GEM Chip G Single Cell Kit, 16 rxns 10X Genomics 1000127
Chromium Next GEM Single Cell 3' Kit v3.1 10X Genomics 1000268
Complete,  EDTA-free Protease Inhibitor Cocktaill Roche 11873580001
DAPI MERCK Chemicals 0000001722
DMEM/F12 Life Technologies 11320074
Dounce tissue grinder set 2 mL complete Sigma Aldrich 10536355
Essential E8 Flex Medium Life Technologies A2858501
EVE Cell Counting Slides VWR EVS-050 ( 734-2676)
Foetal bovine serum tetracycline free (FBS) PAN Biotech P30-3602
Geltrex LDEV-Free (coating) Life Technologies A1413302 
gentleMACS Miltenyi Biotec dissociation maschine
GlutaMAX supplements Life Technologies 35050038
Heparin sodium cell culture tested Sigma H3149-10KU
human recombinant BDNF StemCell Technologies 78005.3
human recombinant GDNF StemCell Technologies 78058.3
Insulin Solution Human Sigma Aldrich I2643-25MG
Knockout serum replacement Life Technologies 10828028
LDN193189 Hydrochloride 98% Sigma Aldrich 130-106-540
MEM non-essential amino acid (100x) Sigma Aldrich M7145-100ml
MgCl2 Magnesium Chloride (1M) RNAse free Thermo Scientific AM9530G
mTeSR Plus StemCell Technologies 100-0276 stem cell medium
mTeSR1 StemCell Technologies 85850 stem cell medium
N2 Supplement  StemCell Technologies 17502048
Neural Tissue Dissociation Kit Miltenyi Biotec B.V. & Co. KG 130-092-628
Neurobasal Plus Life Technologies A3582901
NextSeq500 system Illumina Sequencer
NP-40 Surfact-Amps Detergent Solution Life Technologies 28324
PBS Dulbecco’s Invitrogen 14190169
PenStrep (Penicillin – Streptomycin) Life Technologies 15140122
Percoll Th. Geyer 10668276
Pluronic (R) F-127 Sigma Aldrich P2443-1KG
RiboLock RNase Inhibitor Life Technologies  EO0382
Rock Inhibitor (Y-27632 dihydrochloride) SB Biomol Cay10005583-10
SB 431542  Biogems 3014193
Sodium chloride NaCl (5M), RNase-free-100 mL Invitrogen AM9760G
StemFlex Medium Thermo Scientific A3349401 stem cell medium
StemMACS iPS-Brew XF Miltenyi Biotec 130-104-368 stem cell medium
TC-Platte 96 Well, round bottom Sarstedt 83.3925.500
TISSUi006-A TissUse GmbH https://hpscreg.eu/cell-line/TISSUi006-A
Trypan Blue T8154-20ml Sigma
TrypLE Express Enzyme, no phenol red Life Technologies 12604013 Trypsin-based reagent
UltraPure 1M Tris-HCl Buffer, pH 7.5 Life Technologies 15567027
XAV939 Enzo Life sciences BML-WN100-0005

参考文献

  1. Finkbeiner, S. R., et al. Stem cell-derived human intestinal organoids as an infection model for Rotaviruses. mBio. 3 (4), e00159-e00212 (2012).
  2. Freedman, B. S., et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids. Nat Commun. 6, 8715 (2015).
  3. Guan, Y., et al. Human hepatic organoids for the analysis of human genetic diseases. JCI Insight. 2 (17), e94954 (2017).
  4. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  5. Dang, J., et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 19 (2), 258-265 (2016).
  6. Inak, G., et al. Defective metabolic programming impairs early neuronal morphogenesis in neural cultures and an organoid model of Leigh syndrome. Nat Commun. 12 (1), 1929 (2021).
  7. Karlsson, M., et al. A single-cell type transcriptomics map of human tissues. Sci Adv. 7 (31), eabh2169 (2021).
  8. Piwecka, M., Rajewsky, N., Rybak-Wolf, A. Single-cell and spatial transcriptomics: deciphering brain complexity in health and disease. Nat Rev Neurol. 19 (6), 346-362 (2023).
  9. Lim, B., Lin, Y., Navin, N. Advancing cancer research and medicine with single-cell genomics. Cancer Cell. 37 (4), 456-470 (2020).
  10. Camp, J. G., et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 112 (51), 15672-15677 (2015).
  11. Fiorenzano, A., et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat Commun. 13 (1), 3312 (2022).
  12. Kanton, S., et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature. 574 (7778), 418-422 (2019).
  13. Notaras, M., et al. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry. 27 (3), 1416-1434 (2022).
  14. Rybak-Wolf, A., et al. Modelling viral encephalitis caused by herpes simplex virus 1 infection in cerebral organoids. Nat Microbiol. 8 (7), 1252-1266 (2023).
  15. Bock, C., et al. The organoid cell atlas. Nat Biotechnol. 39 (1), 13-17 (2021).
  16. Brazovskaja, A., Treutlein, B., Camp, J. G. High-throughput single-cell transcriptomics on organoids. Cur Opinion Biotechnol. 55, 167-171 (2019).
  17. Velasco, S., et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature. 570, 523-527 (2019).
  18. Uzquiano, A., et al. Proper acquisition of cell class identity in organoids allows definition of fate specification programs of the human cerebral cortex. Cell. 185 (20), 3770-3788.e27 (2022).
  19. Mattei, D., et al. Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int J Mol Sci. 21 (21), 7944 (2020).
  20. Van Den Brink, S. C., et al. Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations. Nat Methods. 14 (10), 935-936 (2017).
  21. Slyper, M., et al. A single-cell and single-nucleus RNA-Seq toolbox for fresh and frozen human tumors. Nat Med. 26 (5), 792-802 (2020).
  22. Santos, M. D., et al. Extraction and sequencing of single nuclei from murine skeletal muscles. STAR Protoc. 2 (3), 100694 (2021).
  23. Fleck, J. S., et al. Inferring and perturbing cell fate regulomes in human cerebral organoids. Nature. 621 (7978), 365-372 (2021).
  24. Martins-Costa, C., et al. Morphogenesis and development of human telencephalic organoids in the absence and presence of exogenous extracellular matrix. EMBO J. 42 (22), e113213 (2023).
  25. Hao, Y., et al. Integrated analysis of multimodal single-cell data. Cell. 184 (13), 3573-3587.e29 (2021).
  26. Choe, M. S., et al. A simple method to improve the quality and yield of human pluripotent stem cell-derived cerebral organoids. Heliyon. 7 (6), e07350 (2021).
  27. Giandomenico, S. L., et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 22 (4), 669-679 (2019).
  28. Denisenko, E., et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21 (1), 130 (2020).
  29. Wen, F., Tang, X., Xu, L., Qu, H. Comparison of single-nucleus and single-cell transcriptomes in hepatocellular carcinoma tissue. Mol Med Rep. 26 (5), 339 (2022).
  30. Alles, J., et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 15 (1), 44 (2017).

Play Video

記事を引用
Wandres, M., Aigner, D., Kastelic, N., Boltengagen, A., Rybak-Wolf, A., Rajewsky, N. Generation and Downstream Analysis of Single-Cell and Single-Nuclei Transcriptomes in Brain Organoids. J. Vis. Exp. (205), e66225, doi:10.3791/66225 (2024).

View Video