Descriviamo nuove e semplici metodologie di sintesi e caratterizzazione di particelle biocompatibili di lignina micro e submicronica. Queste formulazioni forniscono un approccio facile per l’utilizzo dell’eteropolimero, nonché un’alternativa per la progettazione razionale di matrici carrier multifunzionali con potenziale applicabilità in biomedicina, tecnologia farmaceutica e industria alimentare.
L’applicabilità della micro/nanotecnologia dei biopolimeri nella medicina umana, veterinaria, farmaceutica e alimentare è in rapida crescita grazie al grande potenziale delle particelle a base di biopolimeri come efficaci sistemi di trasporto. L’utilizzo della lignina come biomatrice eteropolimerica di base per la progettazione di formulazioni innovative micro/submicroniche consente il raggiungimento di una maggiore biocompatibilità e offre vari gruppi funzionali attivi presentando opportunità di personalizzazione delle proprietà fisico-chimiche e delle bioattività delle formulazioni per diverse applicazioni. Lo scopo del presente studio è stato quello di sviluppare una metodologia semplice ed ecologica per la sintesi di particelle di lignina di dimensioni micro e submicroniche; valutarne le caratteristiche fisico-chimiche, spettrali e strutturali; ed esaminare la loro capacità di incapsulamento di molecole biologicamente attive e il potenziale per il rilascio in vitro di bioflavonoidi in terreni gastrointestinali simulati. Le metodologie presentate applicano solventi economici e verdi; processi facili, diretti, rapidi e sensibili che richiedono poche attrezzature, sostanze non tossiche e metodi semplici per la loro caratterizzazione, la determinazione della capacità di incapsulamento nei confronti dei composti bioattivi scarsamente solubili in acqua Morin e Quercetina e il potenziale di rilascio in vitro delle matrici di lignina.
Al giorno d’oggi l’inclinazione verso biopolimeri come cellulosa, chitosano, collagene, destrano, gelatina e lignina come precursori per la progettazione di vettori micro/submicronici con dimensioni, proprietà fisico-chimiche e biofunzionalità personalizzabili è aumentata nelle industrie biomediche, farmaceutiche e della tecnologia alimentare grazie alla loro applicabilità nell’ingegneria tissutale, nel bioprinting 3D, nella vitro piattaforme di modellazione delle malattie, industria dell’imballaggio, preparazione di emulsioni e somministrazione di nutrienti tra gli altri 1,2,3.
Nuovi studi evidenziano gli aspetti degli idrogel a base di lignina e delle micro e nanoformulazioni4 come veicoli vantaggiosi utilizzati per i materiali di imballaggio alimentare5, l’accumulo di energia6, i cosmetici7, gli stabilizzanti termici/fotoelettrici, i materiali rinforzati e le matrici di vettori di farmaci8 per la somministrazione di molecole idrofobiche, il miglioramento delle barriere UV9, come agenti di rinforzo nei nanocompositi e come alternativa alle nanoparticelle inorganiche a causa di alcuni recenti problemi di sicurezza 10,11,12. La ragione alla base di questa tendenza è la biocompatibilità, la biodegradabilità e la non tossicità del biopolimero etero naturale, nonché le sue comprovate bioattività di potenziale antiossidante della lignina e attività antimicrobiche, antiproliferative e antimicrobiche 13,14,15,16,17.
La letteratura scientifica riporta vari metodi per la sintesi (autoassemblaggio, precipitazione anti-solvente, precipitazione acida e spostamento del solvente)18 e la caratterizzazione di formulazioni su micro/nanoscala a base di lignina, inclusa l’applicazione di solventi costosi o dannosi come tetraidrofurano (THF), dimetilsolfossido (DMSO), N,N-dimetilformammide (DMF) e acetone e processi complicati, indiretti e noiosi che utilizzano molte apparecchiature e sostanze tossiche 12,19,20.
Per superare questi ultimi svantaggi, i seguenti protocolli presentano nuove metodologie per la sintesi di particelle micro-/submicroniche a base di lignina utilizzando solventi economici e verdi; Processi facili, diretti, rapidi e sensibili che richiedono poche attrezzature, sostanze non tossiche e metodi semplici per la loro caratterizzazione e la determinazione della capacità di incapsulamento verso composti bioattivi scarsamente solubili in acqua e potenziale di rilascio in vitro delle matrici di lignina. I metodi di produzione su scala di laboratorio presentati sono vantaggiosi per la produzione di vettori funzionali di lignina con dimensioni regolabili, elevata capacità di incapsulamento e comportamento di rilascio in vitro sostenibile utilizzando semplici procedure di caratterizzazione e sostanze chimiche ecologiche che possono trovare applicazione in varie aree delle scienze biomediche e della tecnologia alimentare. Due flavonoidi sono stati applicati come molecole bersaglio incapsulate nelle particelle di lignina: morin nelle microparticelle e quercetina nelle particelle submicroniche. La differenza nelle strutture di entrambi i flavonoidi è solo la posizione del secondo gruppo -OH nell’anello aromatico B: il gruppo -OH è in posizione 2′ nella morina e in posizione 3′ nella quercetina, quindi entrambi i composti organici sono isomeri posizionali. Quest’ultimo fatto presuppone un comportamento simile di entrambi i composti naturali bioattivi nei processi di incapsulamento e/o rilascio.
Tra le principali criticità delle moderne metodologie di sintesi per la progettazione di formulazioni di vettori di farmaci a base di biopolimeri c’è l’applicazione di reagenti organici pericolosi – solventi volatili e infiammabili, come tetraidrofurano, acetone, metanolo e persino DMSO in alte concentrazioni – che ne limita l’applicabilità in biomedicina, industria farmaceutica e tecnologia alimentare a causa della manifestazione di possibili effetti tossici20, </s…
The authors have nothing to disclose.
Questo studio è stato sostenuto dal Fondo scientifico bulgaro nell’ambito del contratto n. KΠ-06 H59/3 e dal progetto scientifico n. 07/2023 FVM, Università di Trakia.
automatic-cell counter | EVE, NanoEnTek | ||
Citric acid | Sigma | 251275 | ACS reagent, ≥99.5% |
digital water bath | Memmert | ||
Eppendorf tubes, 1.5-2 mL | |||
Ethanol | Sigma | 34852-M | absolute, suitable for HPLC, ≥99.8% |
Folin–Ciocalteu’s phenol reagent | Sigma | F9252 | |
freeze dryer | Biobase | ||
gallic acid | Sigma- | BCBW7577 | monohydrate |
HCl | Sigma | 258148 | ACS reagent, 37% |
HNO3 | Sigma | 438073 | ACS reagent, 70% |
lignin, alkali | Sigma | 370959 | |
morin | Sigma | PHL82601 | |
NaCl | Sigma | S9888 | ACS reagent, ≥99.0% |
Na2CO3 | Sigma | 223530 | powder, ≥99.5%, ACS reagent |
NaOH | Sigma | 655104 | reagent grade, 97%, powder |
orbital shaker | IKA | KS 130 basic | |
pH-meter | Consort | ||
phosphate-buffered saline (PBS) | Sigma | RNBH7571 | |
Quercetin hydrate | Sigma | STBG3815V | |
statistical software for Excel | Microsoft Corporation | XLSTAT Version 2022.4.5. | |
Tween 80 | Sigma | P8074 | BioXtra, viscous liquid |
ultracentrifuge | Hermle | Z 326 K | |
Ultrapure water system | Adrona | INTEGRITY+ | |
ultrasound homogenizer | Bandelin Sonopuls | HD 2070 | |
UV/Vis spectrophotometer | Hach-Lange | DR 5000 |