概要

肺換気の過偏波 129Xe磁気共鳴画像の取得

Published: November 21, 2023
doi:

概要

過偏波129Xe磁気共鳴画像法(MRI)は、肺機能の局所的に分解された側面を研究するための方法です。この作業は、パルスシーケンス設計、129Xe線量の準備、スキャンワークフロー、および被験者の安全性モニタリングのベストプラクティスに特に注意を払って、肺換気の過分極129XeMRIのエンドツーエンドの標準化されたワークフローを提示します。

Abstract

過偏波 129Xe MRIは、構造的および機能的な肺イメージング技術のユニークな配列で構成されています。 129XeがMR造影剤として最近FDAに承認され、研究機関や臨床機関の間で 129Xe MRIへの関心が高まっていることを考えると、施設間の技術標準化はますます重要になっています。 129Xe MRI Clinical Trials Consortium(Xe MRI CTC)のメンバーは、 129Xe MRIワークフローの主要な側面のそれぞれについてベストプラクティスに合意しており、これらの推奨事項は最近の出版物にまとめられています。この研究は、Xe MRI CTC の推奨事項に従って、肺換気の 129枚の Xe MR 画像を収集するためのエンドツーエンドのワークフローを開発するための実用的な情報を提供します。MR 研究のための 129Xe の準備と投与について議論し、実証し、研究全体および個々の MR スキャンの適切なガス量の選択、個々の 129Xe 用量の準備と送達、および研究中の被験者の安全性と 129Xe 忍容性を監視するためのベスト プラクティスなどの特定のトピックを使用します。また、パルスシーケンスタイプと最適化されたパラメータ、 129Xeフリップ角度と中心周波数のキャリブレーション、 129Xe MRI換気画像解析など、MRの主要な技術的考慮事項についても説明します。

Introduction

過偏波129Xe MRIは、肺機能の特定の側面の非侵襲的で空間的に分解された特性評価と定量化のためのエキサイティングなツールです1,2,3。解剖学的陽子線MRIで使用されるものと同様の取得および再構成アプローチにより、肺に吸入された129Xeの画像が得られ、非換気肺領域の視覚化と換気分布の領域分解定量化が可能になります4,5,6,7,8.より高度なパルスシーケンスと分析技術により、分光MRIによる肺胞と肺毛細血管間のガス交換効率の定量化9,10,11,12,13や、拡散強調MRIによる肺胞微細構造の完全性の特性評価14,15,16など、さらに補完的な情報が得られます。

吸入された129Xeは、肺疾患のある被験者を含む成人および小児被験者において安全で忍容性が高いことが証明されています17,18129回のXe MRIによる肺機能の測定では、慢性閉塞性肺疾患6,10,19、嚢胞性線維症20,21,22、特発性肺線維症23,24,25、喘息7,10など、多くの肺疾患の状況における構造的および機能的変化に対する感受性が示されています26129Xe MRIの高い安全性と忍容性を考えると、他の一般的なイメージングアプローチと比較してMRIには電離放射線がなく、129Xe MRIの結果の高い再現性27,28129Xe MRIは、特に慢性肺疾患の経時的な治療を受けている個人の正確な連続モニタリングに大きな期待が寄せられています。

129Xe MRIの安全性と臨床的有望性により、2022年12月に12歳以上の29歳の人を対象とした肺換気画像検査のFDA承認に至りました。このため、今後数年間で、129回のXe MRIを実施できる研究施設や臨床施設(現在、世界中で~20施設)が大幅に増加すると予想されます。129Xe MRIが新しい施設に広がるにつれて、施設が臨床的に関連性のある129Xe MRI技術を迅速に構築し、スキャンを実行して既存の施設と密接に比較できる結果を生成できるようにするための堅牢な方法論リソースが存在することが重要です。

この作業では、129Xe MRI 臨床試験コンソーシアム (Xe MRI CTC) のメンバー機関によって合意され、最近のポジションペーパー 30 に要約された、肺換気のヒト過分極 129Xe MRI の現在のベスト プラクティスを概説します。トピックには、完全な 129Xe MRI ワークフローに最適なカスタマイズされたパルス シーケンスの準備、過偏波 129Xe ガスの準備と投与、ヒト 129Xe MRI セッション用に最適化されたワークフロー、および MRI セッション中の被験者の安全性と快適性を監視するためのベスト プラクティスが含まれます。

Protocol

ヒトを対象とするすべての研究は、治験審査委員会(IRB)の承認を受ける必要があります。規制当局が承認した 129Xe MRIの臨床使用には、IRBの関与は必要ありません。調査研究に参加する前に、将来の被験者には承認されたインフォームドコンセント文書を提供する必要があります。同意を得る人は、研究の目的、手順、利点、およびリスクを含む文書の内容を説明し、質問に答える必?…

Representative Results

図1 は、健康な人の代表的な換気と3面ローカライザーの画像を示しています。換気画像では、肺全体で高い 129Xe信号が観察され、この個人では換気障害は明らかではありません。 図2、 図3、 図4 は、罹患した個人の代表的な換気と解剖学的画像を示しています。 <strong class=…

Discussion

上記の換気および解剖学的MRIアプローチは、実装のシンプルさを維持しながら、画質とSNRを最大化するように設計されています-これらのシーケンスプロトコルは、多核操作が有効になっていれば、一般にベンダー製品のパルスシーケンスから適応することができ、画像はスキャナーコンピュータ上で自動的に再構築されます。ここで説明する2Dアプローチの1つの欠点は、スライス選択的励起…

開示

The authors have nothing to disclose.

Acknowledgements

この研究は、米国国立衛生研究所(認可番号R01-CA172595-01、R01-HL132177、R01-HL167202、S10-OD018079、UL1-TR003015)およびシーメンスメディカルソリューションズから資金提供を受けました。

Materials

1.5T or 3T human MRI scanner Siemens MAGNETOM Symphony (1.5T) or Vida (3T); older models fine, as long as multinuclear option is/can be installed; scanners also available from GE and Philips
129Xe hyperpolarizer Polarean 9820
129Xe MRI phantom
129Xe MRI vest coil Clinical MR Solutions Also available from other vendors
129Xe polarization measurement station Polarean 2881
1H MRI phantom
Coil file for 129Xe MRI vest coil Also available from other vendors for their respective coils
ECG machine
Helium buffer gas
Interface box from coil to scanner May be built into coil, but needs to be included separately if not
Liquid nitrogen
MRI-safe pulse oximeter Philips Expression MR200
Nitrogen buffer gas
PFT machine
Programming/image analysis software MATLAB R2023a Various other options available
Pulse sequence design software Siemens IDEA software package; also available from GE and Philips for their respective scanners
Scanner multinuclear option Siemens Scanner integrated hardware/software package; also available from GE and Philips for their respective scanners
Tedlar gas sampling bags (500, 750, 1000, 1250, 1500 mL)
Xenon gas (129Xe isotopically enriched)

参考文献

  1. Roos, J. E., McAdams, H. P., Kaushik, S. S., Driehuys, B. Hyperpolarized gas MRI: Technique and applications. Magn Reson Imaging Clin N Am. 23 (2), 217-229 (2015).
  2. Mugler, J. P., Altes, T. A. Hyperpolarized 129Xe MRI of the human lung. J Magn Reson Imaging. 37 (2), 313-331 (2013).
  3. Ebner, L., et al. The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol. 86, 343-352 (2017).
  4. He, M., Driehuys, B., Que, L. G., Huang, Y. C. T. Using hyperpolarized 129Xe MRI to quantify the pulmonary ventilation distribution. Acad Radiol. 23 (12), 1521-1531 (2016).
  5. Walkup, L. L., et al. Xenon-129 MRI detects ventilation deficits in paediatric stem cell transplant patients unable to perform spirometry. Eur Respir J. 53 (5), 1801779 (2019).
  6. Virgincar, R. S., et al. Quantitative analysis of hyperpolarized 129Xe ventilation imaging in healthy volunteers and subjects with chronic obstructive pulmonary disease. NMR Biomed. 26 (4), 424-435 (2013).
  7. Ebner, L., et al. Hyperpolarized 129Xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate Asthma: A prospective comparison between semiautomated ventilation defect percentage calculation and pulmonary function tests. Invest Radiol. 52 (2), 120-127 (2017).
  8. Woodhouse, N., et al. Combined helium-3/proton magnetic resonance imaging measurement of ventilated lung volumes in smokers compared to never-smokers. J Magn Reson Imaging. 21 (4), 365-369 (2005).
  9. Mugler, J. P., et al. Simultaneous magnetic resonance imaging of ventilation distribution and gas uptake in the human lung using hyperpolarized xenon-129. Proc Natl Acad Sci U S A. 107 (50), 21707-21712 (2010).
  10. Qing, K., et al. Assessment of lung function in asthma and COPD using hyperpolarized 129Xe chemical shift saturation recovery spectroscopy and dissolved-phase MRI. NMR Biomed. 27 (12), 1490-1501 (2014).
  11. Cleveland, Z. I., et al. Hyperpolarized 129Xe MR imaging of alveolar gas uptake in humans. PLoS One. 5 (8), 12192 (2010).
  12. Wang, Z., et al. Using hyperpolarized 129Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity. J Appl Physiol. 130 (5), 1398-1409 (2021).
  13. Guan, S., et al. 3D single-breath chemical shift imaging hyperpolarized Xe-129 MRI of healthy, CF, IPF, and COPD subjects. Tomography. 8 (5), 2574-2587 (2022).
  14. Ouriadov, A., et al. Lung morphometry using hyperpolarized (129) Xe apparent diffusion coefficient anisotropy in chronic obstructive pulmonary disease. Magn Reson Med. 70 (129), 1699-1706 (2013).
  15. Yablonskiy, D. A., Sukstanskii, A. L., Quirk, J. D., Woods, J. C., Conradi, M. S. Probing lung microstructure with hyperpolarized noble gas diffusion MRI: theoretical models and experimental results. Magn Reson Med. 71 (2), 486-505 (2014).
  16. Chan, H. F., Stewart, N. J., Norquay, G., Collier, G. J., Wild, J. M. 3D diffusion-weighted 129 Xe MRI for whole lung morphometry. Magn Reson Med. 79 (6), 2986-2995 (2018).
  17. Walkup, L. L., et al. tolerability and safety of pediatric hyperpolarized 129Xe magnetic resonance imaging in healthy volunteers and children with cystic fibrosis. Pediatr Radiol. 46 (12), 1651-1662 (2016).
  18. Driehuys, B., et al. Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129Xe MR imaging in healthy volunteers and patients. Radiology. 262 (1), 279-289 (2012).
  19. Myc, L., et al. Characterisation of gas exchange in COPD with dissolved-phase hyperpolarised xenon-129 MRI. Thorax. 76 (2), 178-181 (2021).
  20. Kaushik, S. S., et al. Measuring diffusion limitation with a perfusion-limited gas-Hyperpolarized 129Xe gas-transfer spectroscopy in patients with idiopathic pulmonary fibrosis. J Appl Physiol. 117 (6), 577-585 (2014).
  21. Dournes, G., et al. The clinical use of lung MRI in cystic fibrosis: What, now, how. Chest. 159 (6), 2205-2217 (2021).
  22. Thomen, R. P., et al. Hyperpolarized 129Xe for investigation of mild cystic fibrosis lung disease in pediatric patients. J Cyst Fibros. 16 (2), 275-282 (2017).
  23. Mammarappallil, J. G., Rankine, L., Wild, J. M., Driehuys, B. New developments in imaging idiopathic pulmonary fibrosis with hyperpolarized xenon magnetic resonance imaging. J Thorac Imaging. 34 (2), 136-150 (2019).
  24. Rankine, L. J., et al. 129Xenon gas exchange magnetic resonance imaging as a potential prognostic marker for progression of idiopathic pulmonary fibrosis. Ann Am Thorac. 17 (1), 121-125 (2020).
  25. Mata, J., et al. Evaluation of regional lung function in pulmonary fibrosis with xenon-129 MRI. Tomography. 7 (3), 452-465 (2021).
  26. Svenningsen, S., et al. Hyperpolarized (3) He and (129) Xe MRI: Differences in asthma before bronchodilation. J Magn Reson Imaging. 38 (3), 1521-1530 (2013).
  27. Stewart, N. J., et al. Comparison of 3He and 129Xe MRI for evaluation of lung microstructure and ventilation at 1.5T. J Magn Reson Imaging. 48 (3), 632-642 (2018).
  28. Hughes, P. J. C., et al. Assessment of the influence of lung inflation state on the quantitative parameters derived from hyperpolarized gas lung ventilation MRI in healthy volunteers. J Appl Physiol. 126 (1), 183-192 (2019).
  29. Polarean. . FDA Approves Polarean’s XENOVIEWTM (xenon Xe 129 hyperpolarized) for use with MRI for the evaluation of lung ventilation. , (2022).
  30. Niedbalski, P. J., et al. Protocols for multi-site trials using hyperpolarized 129Xe MRI for imaging of ventilation, alveolar-airspace size, and gas exchange: A position paper from the 129Xe MRI clinical trials consortium. Magn Reson Med. 86 (6), 2966-2986 (2021).
  31. Bier, E. A., et al. A thermally polarized 129 Xe phantom for quality assurance in multi-center hyperpolarized gas MRI studies. Magn Reson Med. 82 (5), 1961-1968 (2019).
  32. He, M., et al. Dose and pulse sequence considerations for hyperpolarized 129Xe ventilation MRI. Magn Reson Imaging. 33 (7), 877-885 (2015).
  33. Tustison, N. J., et al. Image- versus histogram-based considerations in semantic segmentation of pulmonary hyperpolarized gas images. Magn Reson Med. 86 (5), 2822-2836 (2021).
  34. Tustison, N. J., et al. Convolutional neural networks with template-based data augmentation for functional lung image quantification. Acad Radiol. 26 (3), 412-423 (2019).
  35. Wild, J. M., et al. Comparison between 2D and 3D gradient-echo sequences for MRI of human lung ventilation with hyperpolarized 3He. Magn Reson Med. 52 (3), 673-678 (2004).
  36. Willmering, M. M., et al. Improved pulmonary 129 Xe ventilation imaging via 3D-spiral UTE MRI. Magn Reson Med. 84 (1), 312-320 (2020).
  37. Collier, G. J., et al. Single breath-held acquisition of coregistered 3D 129 Xe lung ventilation and anatomical proton images of the human lung with compressed sensing. Magn Reson Med. 82 (1), 342-347 (2019).
  38. Zha, W., et al. Semiautomated ventilation defect quantification in exercise-induced bronchoconstriction using hyperpolarized helium-3 magnetic resonance imaging: a repeatability study. Acad Radiol. 23 (9), 1104-1114 (2016).
  39. Ray, N., Acton, S. T., Altes, T. A., de Lange, E. E., Brookeman, J. R. Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation. IEEE Trans Med Imaging. 22 (2), 189-199 (2003).
  40. Hughes, P. J. C., et al. Spatial fuzzy c-means thresholding for semiautomated calculation of percentage lung ventilated volume from hyperpolarized gas and 1 H MRI. J Magn Reson Imaging. 47 (3), 640-646 (2018).
  41. Tustison, N. J., et al. Ventilation-based segmentation of the lungs using hyperpolarized (3)He MRI. J Magn Reson Imaging. 34 (3), 831-841 (2011).
  42. Kanhere, N., et al. Correlation of lung clearance index with hyperpolarized 129Xe magnetic resonance imaging in pediatric subjects with cystic fibrosis. Am J Respir Crit Care Med. 196 (8), 1073-1075 (2017).
  43. Rayment, J. H., et al. Hyperpolarised 129Xe magnetic resonance imaging to monitor treatment response in children with cystic fibrosis. Eur Respir J. 53 (5), 1802188 (2019).

Play Video

記事を引用
Garrison, W. J., Mugler III, J. P., Mata, J. F., Nunoo-Asare, R. N., Shim, Y. M., Miller, G. W. Acquiring Hyperpolarized 129Xe Magnetic Resonance Images of Lung Ventilation. J. Vis. Exp. (201), e65982, doi:10.3791/65982 (2023).

View Video