يصف هذا البروتوكول طريقة تستخدم مشبك رقعة لدراسة الاستجابات الكهربائية للخلايا العصبية الحركية لتحفيز الحبل الشوكي (SCS) بدقة زمانية مكانية عالية ، والتي يمكن أن تساعد الباحثين على تحسين مهاراتهم في فصل الحبل الشوكي والحفاظ على صلاحية الخلية في وقت واحد.
يمكن لتحفيز الحبل الشوكي (SCS) استعادة الوظيفة الحركية بشكل فعال بعد إصابة الحبل الشوكي (SCI). نظرا لأن الخلايا العصبية الحركية هي الوحدة الأخيرة لتنفيذ السلوكيات الحسية الحركية ، فإن الدراسة المباشرة للاستجابات الكهربائية للخلايا العصبية الحركية مع SCS يمكن أن تساعدنا في فهم المنطق الأساسي لتعديل الحركة الشوكية. لتسجيل خصائص التحفيز المتنوعة والاستجابات الخلوية في وقت واحد ، يعد مشبك التصحيح طريقة جيدة لدراسة الخصائص الفيزيولوجية الكهربية على نطاق خلية واحدة. ومع ذلك ، لا تزال هناك بعض الصعوبات المعقدة في تحقيق هذا الهدف ، بما في ذلك الحفاظ على صلاحية الخلية ، وفصل الحبل الشوكي بسرعة عن البنية العظمية ، واستخدام SCS لتحفيز جهود الفعل بنجاح. هنا ، نقدم بروتوكولا مفصلا باستخدام patch-clamp لدراسة الاستجابات الكهربائية للخلايا العصبية الحركية ل SCS بدقة زمانية مكانية عالية ، والتي يمكن أن تساعد الباحثين على تحسين مهاراتهم في فصل الحبل الشوكي والحفاظ على صلاحية الخلية في نفس الوقت لدراسة الآلية الكهربائية ل SCS بسلاسة على الخلايا العصبية الحركية وتجنب التجربة والخطأ غير الضروريين.
يمكن لتحفيز الحبل الشوكي (SCS) استعادة الوظيفة الحركية بشكل فعال بعد إصابة الحبل الشوكي (SCI). أفاد Andreas Rowald et al. أن SCS تمكن الطرف السفلي من وظيفة المحرك والجذع في غضون يوم واحد1. يعد استكشاف الآلية البيولوجية ل SCS للتعافي الحركي مجالا بحثيا مهما وشائعا لتطوير استراتيجية SCS أكثر دقة. على سبيل المثال ، أظهر فريق Grégoire Courtine أن الخلايا العصبية البينية Vsx2 المثيرة والخلايا العصبية Hoxa10 في الحبل الشوكي هي الخلايا العصبية الرئيسية للاستجابة ل SCS ، والتعديل العصبي الخاص بالخلية ممكن لاستعادة قدرة الفئران على المشي بعد SCI2. ومع ذلك ، تركز دراسات قليلة على الآلية الكهربائية ل SCS على نطاق خلية واحدة. على الرغم من أنه من المعروف أن محفز التيار المباشر فوق العتبة يمكن أن يثير جهود الفعل (APs) في تجربة الحبار الكلاسيكية3،4،5 ، إلا أن كيفية تأثير التحفيز الكهربائي المتناوب النبضي ، مثل SCS ، على توليد إشارة المحرك لا يزال غير واضح.
نظرا لتعقيد الدوائر العصبية داخل العمود الفقري ، فإن الاختيار المناسب لسكان الخلايا مهم للتحقيق في الآلية الكهربائية ل SCS. على الرغم من أن SCS يستعيد الوظيفة الحركية عن طريق تنشيط مسار الحس العميق6 ، فإن الخلايا العصبية الحركية هي الوحدة النهائية لتنفيذ الأمر الحركي ، المستمدة من دمج معلومات استقبال الحس العميق7. لذلك ، يمكن أن تساعدنا الدراسة المباشرة للخصائص الكهربائية للخلايا العصبية الحركية مع SCS في فهم المنطق الأساسي لتعديل المحرك الشوكي.
كما نعلم ، فإن مشبك التصحيح هو الطريقة القياسية الذهبية للتسجيل الكهربي الخلوي بدقة زمانية مكانية عالية للغاية8. لذلك ، تصف هذه الدراسة طريقة تستخدم مشبك رقعة لدراسة الاستجابات الكهربائية للخلايا العصبية الحركية ل SCS. بالمقارنة مع مشبك رقعة الدماغ9 ، فإن مشبك رقعة الحبل الشوكي أكثر صعوبة للأسباب التالية: (1) الحبل الشوكي محمي بواسطة القناة الفقرية ذات الحجم الصغير ، الأمر الذي يتطلب معالجة دقيقة للغاية وصيانة صارمة للجليد للحصول على صلاحية أفضل للخلايا. (2) نظرا لأن الحبل الشوكي نحيف جدا بحيث لا يمكن تثبيته على صينية القطع ، فيجب غمره في أغاروز منخفض نقطة الانصهار وتقليمه بعد التصلب.
ومن ثم ، توفر هذه الطريقة تفاصيل فنية في تشريح الحبل الشوكي والحفاظ على صلاحية الخلية في نفس الوقت وذلك لدراسة الآلية الكهربائية ل SCS بسلاسة على الخلايا العصبية الحركية وتجنب التجارب والأخطاء غير الضرورية.
تتقارب معلومات الحركة المعدلة بواسطة SCS أخيرا مع الخلايا العصبية الحركية. لذلك ، فإن أخذ الخلايا العصبية الحركية كهدف للبحث قد يبسط تصميم الدراسة ويكشف عن آلية التعديل العصبي ل SCS بشكل مباشر أكثر. لتسجيل خصائص التحفيز المتنوعة والاستجابات الخلوية في وقت واحد ، يعد مشبك التصحيح طريقة جيدة ?…
The authors have nothing to disclose.
تم تمويل هذه الدراسة من قبل المؤسسة الوطنية للعلوم الطبيعية في الصين للعلماء الشباب (52207254 و 82301657) وصندوق علوم ما بعد الدكتوراه الصيني (2022M711833).
Adenosine 5’-triphosphate magnesium salt | Sigma | A9187 | |
Ascorbic Acid | Sigma | A4034 | |
CaCl2·2H2O | Sigma | C5080 | |
Choline Chloride | Sigma | C7527 | |
Cover slide tweezers | VETUS | 36A-SA | Clip a slice |
D-Glucose | Sigma | G8270 | |
EGTA | Sigma | E4378 | |
Fine scissors | RWD Life Science | S12006-10 | Cut the diaphragm |
Fluorescence Light Source | Olympus | U-HGLGPS | |
Fluoro-Gold | Fluorochrome | Fluorochrome | Label the motor neuron |
Guanosine 5′-triphosphate sodium salt hydrate | Sigma | G8877 | |
HEPES | Sigma | H3375 | |
infrared CCD camera | Dage-MTI | IR-1000E | |
KCl | Sigma | P5405 | |
K-gluconate | Sigma | P1847 | |
Low melting point agarose | Sigma | A9414 | |
MgSO4·7H2O | Sigma | M2773 | |
Micromanipulator | Sutter Instrument | MP-200 | |
Micropipette puller | Sutter instrument | P1000 | |
Micro-scissors | Jinzhong | wa1020 | Laminectomy |
Microscope for anatomy | Olympus | SZX10 | |
Microscope for ecletrophysiology | Olympus | BX51WI | |
Micro-toothed tweezers | RWD Life Science | F11008-09 | Lift the cut vertebral body |
NaCl | Sigma | S5886 | |
NaH2PO4 | Sigma | S8282 | |
NaHCO3 | Sigma | V900182 | |
Na-Phosphocreatine | Sigma | P7936 | |
Objective lens for ecletrophysiology | Olympus | LUMPLFLN60XW | working distance 2 mm |
Osmometer | Advanced | FISKE 210 | |
Patch-clamp amplifier | Axon | Multiclamp 700B | |
Patch-clamp digitizer | Axon | Digidata 1550B | |
pH meter | Mettler Toledo | FE28 | |
Slice Anchor | Multichannel system | SHD-27H | |
Spinal cord stimulatior | PINS | T901 | |
Toothed tweezer | RWD Life Science | F13030-10 | Lift the xiphoid |
Vibratome | Leica | VT1200S | |
Wide band ultraviolet excitation filter | Olympus | U-MF2 |