概要

小鼠背根神经节冷冻切片的程序

Published: June 09, 2023
doi:

概要

这里介绍的是持续获得高质量背根神经节低温恒温器切片的发展。

Abstract

在炎症和神经性疼痛、瘙痒以及其他周围神经系统疾病的研究中,高质量的小鼠背根神经节 (DRG) 低温恒温器切片对于适当的免疫化学染色和 RNAscope 研究至关重要。然而,由于 DRG 组织的样本量很小,因此在载玻片上始终如一地获得高质量、完整和扁平的低温恒温器切片仍然是一个挑战。到目前为止,还没有文章描述DRG冷冻切片的最佳方案。该协议提供了一种分步方法,以解决与DRG冷冻切片相关的常见困难。本文解释了如何从DRG组织样品中去除周围的液体,将DRG切片朝向相同的方向放置在载玻片上,并在不弯曲的情况下压平载玻片上的切片。尽管该协议是为冷冻切除DRG样品而开发的,但它可以应用于许多其他样品量小的组织冷冻切片。

Introduction

背根神经节 (DRG) 包含初级感觉神经元、组织巨噬细胞和围绕初级感觉神经元的卫星细胞 1,2,3,4。它是处理无害和有害信号的关键解剖结构,在疼痛、瘙痒和各种周围神经疾病中起关键作用5678910111213尽管已经开发了几种方法来解剖小鼠脊髓的 DRG 组织14,15,16,但由于 DRG 组织非常小,并且 DRG 样品的低温恒温器切片往往会弯曲成卷因此很难将低温恒温器切片正确地转移到载玻片上。然而,DRG 组织的正确冷冻切片对于免疫组化研究和 DRG 感觉神经元的结构至关重要1718、19、20、21、2223此外,由于单细胞RNA测序结果揭示了人类24和小鼠25中DRG感觉神经元的显着异质性,因此对DRG组织进行适当的冷冻切片对于研究不同DRG细胞在各种生理和病理条件下的功能作用至关重要。

尽管组织透明化技术已被应用于研究 DRG26 的 3D 重建,作为冷冻切除 DRG 的替代技术,但组织透明化技术既费时又费力。相比之下,DRG的冷冻切片快速且相对容易执行,因此它仍然是DRG和中枢神经系统其他区域的免疫组化和结构研究的关键技术。然而,在载玻片上获得高质量、完整和扁平的低温恒温器切片仍然是神经科学研究中的一个挑战,因为组织的样本量很小,如DRG和某些大脑区域,并且目前没有文章描述冷冻切片小尺寸组织样本的最佳方案,如小鼠DRG。

该协议为小鼠DRG的低温恒温器切片提供了一种简单的分步技术,以可靠地在载玻片上获得尽可能多的高质量DRG切片,用于后续的DRG研究。虽然该技术专为冷冻切除 DRG 样品而设计,但可用于冷冻切除样品量较小的各种其他组织。

Protocol

在本研究中,动物实验得到了加州大学旧金山分校机构动物护理和使用委员会的批准,并按照美国国立卫生研究院实验动物护理和使用指南进行。这里使用8-12周龄的成年C57BL / 6雄性和雌性小鼠(内部繁殖)。 1. DRG样品制备 用2.5%Avertin麻醉小鼠(参见材料表)。通过对疼痛刺激缺乏反应来确保充分麻醉。如前所述,用1x磷酸盐缓冲盐水(PBS)然…

Representative Results

目前的研究从一只小鼠 L4 DRG 中收集了大约 16 个连续的高质量 DRG 切片。获得的部分没有任何失真。 图 1 描述了冷冻切片的分步过程。从组织切片中去除多余的液体如图 2 所示。 OCT包埋组织的过程如图3所示。 图 4 显示了载玻片上 DRG 部分的正确位置。 图5 显示了小鼠DRG切…

Discussion

该协议为小鼠DRG的低温恒温器切片提供了简单的分步程序,以可靠地在载玻片上获得高质量的DRG切片。该协议有四个关键步骤。首先,在将 DRG 样品放到基础 OCT 上之前,必须将 DRG 样品和镊子干燥。DRG 样品周围的任何液体都会在其周围形成冰壳,导致 DRG 部分与 OCT 分离并向上弯曲。其次,如果铝块没有标记,或者如果底座 OCT 覆盖了标记,则重要的是在底座 OCT 的底部(六点钟位置)做一个标记?…

開示

The authors have nothing to disclose.

Acknowledgements

没有。

Materials

Avertin Sigma-Aldrich T48402-25G Anesthetize animal
Epredia Cryotome Cryostat Cryocassettes, 25 mm dia. Crosshatched Fisherbrand 1910 Hold the OCT section at the bottom 
Ergo Tweezers Fisherbrand S95310 Using the end of a tweezer to gently touch the bottom (6 o’clock) of the section so that it sticks to the platform surface to prevent the section from curving back in a roll 
Fisherbrand Superfrost Plus Microscope Slides Fisherbrand 1255015 To collect the DRG section 
Marking pens Fisherbrand 133794  Mark the orientation of base OCT
Scigen Tissue-Plus O.C.T. Compound Fisherbrand  23730571 Embedding medium for frozen tissue specimens to ensure optimal cutting temperature (O.C.T.).

参考文献

  1. Guan, Z., et al. Injured sensory neuron-derived CSF1 induces microglial proliferation and DAP12-dependent pain. Nature Neuroscience. 19 (1), 94-101 (2016).
  2. Yu, X., et al. Dorsal root ganglion macrophages contribute to both the initiation and persistence of neuropathic pain. Nature Communications. 11 (1), 264 (2020).
  3. Costa, F. A. L., Moreira Neto, F. L. Satellite glial cells in sensory ganglia: its role in pain. Brazilian Journal of Anesthesiology. 65 (1), 73-81 (2015).
  4. Noguri, T., Hatakeyama, D., Kitahashi, T., Oka, K., Ito, E. Profile of dorsal root ganglion neurons: study of oxytocin expression. Molecular Brain. 15 (1), 44 (2022).
  5. Su, P. P., Zhang, L., He, L., Zhao, N., Guan, Z. The role of neuro-immune interactions in chronic pain: implications for clinical practice. Journal of Pain Research. 15, 2223-2248 (2022).
  6. Esposito, M. F., Malayil, R., Hanes, M., Deer, T. Unique characteristics of the dorsal root ganglion as a target for neuromodulation. Pain Medicine. 20, S23-S30 (2019).
  7. Chen, X. J., Sun, Y. G. Central circuit mechanisms of itch. Nature Communications. 11 (1), 3052 (2020).
  8. Guan, Z., Hellman, J., Schumacher, M. Contemporary views on inflammatory pain mechanisms: TRPing over innate and microglial pathways. F1000Research. , (2016).
  9. Boadas-Vaello, P., et al. Neuroplasticity of ascending and descending pathways after somatosensory system injury: reviewing knowledge to identify neuropathic pain therapeutic targets. Spinal Cord. 54 (5), 330-340 (2016).
  10. Guha, D., Shamji, M. F. The dorsal root ganglion in the pathogenesis of chronic neuropathic pain. Neurosurgery. 63, 118-126 (2016).
  11. Shorrock, H. K., et al. UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy. Brain. 141 (10), 2878-2894 (2018).
  12. Sleigh, J. N., et al. Trk receptor signaling and sensory neuron fate are perturbed in human neuropathy caused by Gars mutations. Proceedings of the National Academy of Sciences. 114 (16), E3324-E3333 (2017).
  13. Rubio, M. A., Herrando-Grabulosa, M., Gaja-Capdevila, N., Vilches, J. J., Navarro, X. Characterization of somatosensory neuron involvement in the SOD1(G93A) mouse model. Scientific Reports. 12 (1), 7600 (2022).
  14. Sleigh, J. N., West, S. J., Schiavo, G. A video protocol for rapid dissection of mouse dorsal root ganglia from defined spinal levels. BMC Research Notes. 13 (1), 302 (2020).
  15. Sleigh, J. N., Weir, G. A., Schiavo, G. A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. BMC Research Notes. 9, 82 (2016).
  16. Perner, C., Sokol, C. L. Protocol for dissection and culture of murine dorsal root ganglia neurons to study neuropeptide release. STAR Protocols. 2 (1), 100333 (2021).
  17. Haberberger, R. V., Barry, C., Matusica, D. Immortalized dorsal root ganglion neuron cell lines. Frontiers in Cellular Neuroscience. 14, 184 (2020).
  18. Pokhilko, A., Nash, A., Cader, M. Z. Common transcriptional signatures of neuropathic pain. Pain. 161 (7), 1542-1554 (2020).
  19. Martin, S. L., Reid, A. J., Verkhratsky, A., Magnaghi, V., Faroni, A. Gene expression changes in dorsal root ganglia following peripheral nerve injury: roles in inflammation, cell death and nociception. Neural Regeneration Research. 14 (6), 939-947 (2019).
  20. Miller, R. J., Jung, H., Bhangoo, S. K., White, F. A. Cytokine and chemokine regulation of sensory neuron function. Handbook of Experimental Pharmacology. (194), 417-449 (2009).
  21. Neto, E., et al. Axonal outgrowth, neuropeptides expression and receptors tyrosine kinase phosphorylation in 3D organotypic cultures of adult dorsal root ganglia. PLoS One. 12 (7), e0181612 (2017).
  22. Nascimento, A. I., Mar, F. M., Sousa, M. M. The intriguing nature of dorsal root ganglion neurons: Linking structure with polarity and function. Progress in Neurobiolology. 168, 86-103 (2018).
  23. Middleton, S. J., Perez-Sanchez, J., Dawes, J. M. The structure of sensory afferent compartments in health and disease. Journal of Anatomy. 241 (5), 1186-1210 (2022).
  24. Nguyen, M. Q., von Buchholtz, L. J., Reker, A. N., Ryba, N. J., Davidson, S. Single-nucleus transcriptomic analysis of human dorsal root ganglion neurons. eLife. 10, e71752 (2021).
  25. Usoskin, D., et al. Unbiased classification of sensory neuron types by large-scale single-cell RNA sequencing. Nature Neuroscience. 18 (1), 145-153 (2015).
  26. Hunt, M. A., et al. DRGquant: A new modular AI-based pipeline for 3D analysis of the DRG. Journal of Neuroscience Methods. 371, 109497 (2022).

Play Video

記事を引用
He, L., Zhao, W., Zhang, L., Ilango, M., Zhao, N., Yang, L., Guan, Z. A Procedure for Mouse Dorsal Root Ganglion Cryosectioning. J. Vis. Exp. (196), e65232, doi:10.3791/65232 (2023).

View Video